Line | Branch | Decision | Exec | Source |
---|---|---|---|---|
1 | /** | |||
2 | * @file trigger_input_adc.cpp | |||
3 | * @brief Position sensor hardware layer, Using ADC and software comparator | |||
4 | * | |||
5 | * @date Jan 27, 2020 | |||
6 | * @author andreika <prometheus.pcb@gmail.com> | |||
7 | * @author Andrey Belomutskiy, (c) 2012-2020 | |||
8 | */ | |||
9 | ||||
10 | #include "pch.h" | |||
11 | #include "trigger_input_adc.h" | |||
12 | ||||
13 | ||||
14 | /*static*/ TriggerAdcDetector trigAdcState; | |||
15 | ||||
16 | #define DELTA_THRESHOLD_CNT_LOW (GPT_FREQ_FAST / GPT_PERIOD_FAST / 32) // ~1/32 second? | |||
17 | #define DELTA_THRESHOLD_CNT_HIGH (GPT_FREQ_FAST / GPT_PERIOD_FAST / 4) // ~1/4 second? | |||
18 | ||||
19 | #if HAL_USE_ADC || EFI_UNIT_TEST | |||
20 | #define triggerVoltsToAdcDivided(volts) (voltsToAdc(volts) / trigAdcState.triggerInputDividerCoefficient) | |||
21 | #endif // HAL_USE_ADC || EFI_UNIT_TEST | |||
22 | ||||
23 | // hardware-dependent part | |||
24 | #if (EFI_SHAFT_POSITION_INPUT && HAL_TRIGGER_USE_ADC && HAL_USE_ADC) || defined(__DOXYGEN__) | |||
25 | ||||
26 | #include "digital_input_exti.h" | |||
27 | ||||
28 | #ifndef TRIGGER_ADC_DEBUG_LED | |||
29 | #define TRIGGER_ADC_DEBUG_LED FALSE | |||
30 | #endif | |||
31 | //#define DEBUG_OUTPUT_IGN1 TRUE | |||
32 | //#define TRIGGER_ADC_DUMP_BUF TRUE | |||
33 | ||||
34 | #ifdef TRIGGER_ADC_DEBUG_LED | |||
35 | #define TRIGGER_ADC_DEBUG_LED1_PORT GPIOH | |||
36 | #define TRIGGER_ADC_DEBUG_LED1_PIN 9 | |||
37 | ||||
38 | #ifdef TRIGGER_ADC_DUMP_BUF | |||
39 | static const int dumpBufNum = 100; | |||
40 | static triggerAdcSample_t dumpBuf[dumpBufNum]; | |||
41 | static int dumpBufCnt = 0; | |||
42 | #endif /* TRIGGER_ADC_DUMP_BUF */ | |||
43 | ||||
44 | void toggleLed(int led, int mode) { | |||
45 | #if 1 | |||
46 | static uint8_t st[5] = { 0 }; | |||
47 | if ((st[led] == 0 && mode == 0) || mode == 1) { | |||
48 | palClearPad(TRIGGER_ADC_DEBUG_LED1_PORT, TRIGGER_ADC_DEBUG_LED1_PIN); | |||
49 | #ifdef DEBUG_OUTPUT_IGN1 | |||
50 | palClearPad(GPIOI, 8); | |||
51 | #endif | |||
52 | } | |||
53 | else if ((st[led] != 0 && mode == 0) || mode == -1) { | |||
54 | palSetPad(TRIGGER_ADC_DEBUG_LED1_PORT, TRIGGER_ADC_DEBUG_LED1_PIN); | |||
55 | #ifdef DEBUG_OUTPUT_IGN1 | |||
56 | palSetPad(GPIOI, 8); | |||
57 | #endif | |||
58 | } | |||
59 | st[led] = (st[led] + 1) % 2/*10*/; //!!!!!!!!!!! | |||
60 | #endif | |||
61 | } | |||
62 | #endif /* TRIGGER_ADC_DEBUG_LED */ | |||
63 | ||||
64 | // used for fast pin mode switching between ADC and EXTINT | |||
65 | static ioportid_t triggerInputPort; | |||
66 | static ioportmask_t triggerInputPin; | |||
67 | ||||
68 | #ifndef PAL_MODE_EXTINT | |||
69 | #define PAL_MODE_EXTINT PAL_MODE_INPUT | |||
70 | #endif /* PAL_MODE_EXTINT */ | |||
71 | ||||
72 | void setTriggerAdcMode(triggerAdcMode_t adcMode) { | |||
73 | trigAdcState.curAdcMode = adcMode; | |||
74 | trigAdcState.modeSwitchCnt++; | |||
75 | ||||
76 | palSetPadMode(triggerInputPort, triggerInputPin, | |||
77 | (adcMode == TRIGGER_ADC_ADC) ? PAL_MODE_INPUT_ANALOG : PAL_MODE_EXTINT); | |||
78 | } | |||
79 | ||||
80 | static void shaft_callback(void *arg, efitick_t stamp) { | |||
81 | // do the time sensitive things as early as possible! | |||
82 | ioline_t pal_line = (ioline_t)arg; | |||
83 | bool rise = (palReadLine(pal_line) == PAL_HIGH); | |||
84 | ||||
85 | trigAdcState.digitalCallback(stamp, true, rise); | |||
86 | } | |||
87 | ||||
88 | static void cam_callback(void *, efitick_t stamp) { | |||
89 | // TODO: implement... | |||
90 | } | |||
91 | ||||
92 | void triggerAdcCallback(triggerAdcSample_t value) { | |||
93 | efitick_t stamp = getTimeNowNt(); | |||
94 | trigAdcState.analogCallback(stamp, value); | |||
95 | } | |||
96 | ||||
97 | #ifdef TRIGGER_ADC_DUMP_BUF | |||
98 | static void printDumpBuf(void) { | |||
99 | efiPrintf("------"); | |||
100 | for (int i = 0; i < dumpBufNum; i++) { | |||
101 | int pos = (dumpBufCnt - i - 1 + dumpBufNum) % dumpBufNum; | |||
102 | triggerAdcSample_t v = dumpBuf[pos]; | |||
103 | efiPrintf("[%d] %d", i, v); | |||
104 | } | |||
105 | } | |||
106 | #endif /* TRIGGER_ADC_DUMP_BUF */ | |||
107 | ||||
108 | ||||
109 | int adcTriggerTurnOnInputPin(const char *msg, int index, bool isTriggerShaft) { | |||
110 | brain_pin_e brainPin = isTriggerShaft ? | |||
111 | engineConfiguration->triggerInputPins[index] : engineConfiguration->camInputs[index]; | |||
112 | ||||
113 | trigAdcState.init(); | |||
114 | ||||
115 | triggerInputPort = getHwPort("trg", brainPin); | |||
116 | triggerInputPin = getHwPin("trg", brainPin); | |||
117 | ||||
118 | ioline_t pal_line = PAL_LINE(triggerInputPort, triggerInputPin); | |||
119 | efiPrintf("turnOnTriggerInputPin %s l=%ld", hwPortname(brainPin), pal_line); | |||
120 | ||||
121 | if (efiExtiEnablePin(msg, brainPin, PAL_EVENT_MODE_BOTH_EDGES, | |||
122 | isTriggerShaft ? shaft_callback : cam_callback, (void *)pal_line) < 0) { | |||
123 | return -1; | |||
124 | } | |||
125 | ||||
126 | // ADC mode is default, because we don't know if the wheel is already spinning | |||
127 | setTriggerAdcMode(TRIGGER_ADC_ADC); | |||
128 | ||||
129 | #ifdef TRIGGER_ADC_DEBUG_LED | |||
130 | palSetPadMode(TRIGGER_ADC_DEBUG_LED1_PORT, TRIGGER_ADC_DEBUG_LED1_PIN, PAL_MODE_OUTPUT_PUSHPULL); | |||
131 | #ifdef DEBUG_OUTPUT_IGN1 | |||
132 | palSetPadMode(GPIOI, 8, PAL_MODE_OUTPUT_PUSHPULL); | |||
133 | #endif | |||
134 | #endif /* TRIGGER_ADC_DEBUG_LED */ | |||
135 | ||||
136 | #ifdef TRIGGER_ADC_DUMP_BUF | |||
137 | addConsoleAction("trigger_adc_dump", printDumpBuf); | |||
138 | #endif /* TRIGGER_ADC_DUMP_BUF */ | |||
139 | ||||
140 | return 0; | |||
141 | } | |||
142 | ||||
143 | void adcTriggerTurnOffInputPin(brain_pin_e brainPin) { | |||
144 | efiExtiDisablePin(brainPin); | |||
145 | } | |||
146 | ||||
147 | void adcTriggerTurnOnInputPins() { | |||
148 | } | |||
149 | ||||
150 | adc_channel_e getAdcChannelForTrigger(void) { | |||
151 | // todo: add other trigger or cam channels? | |||
152 | brain_pin_e brainPin = engineConfiguration->triggerInputPins[0]; | |||
153 | if (!isBrainPinValid(brainPin)) | |||
154 | return EFI_ADC_NONE; | |||
155 | return getAdcChannel(brainPin); | |||
156 | } | |||
157 | ||||
158 | void addAdcChannelForTrigger(void) { | |||
159 | adc_channel_e channel = getAdcChannelForTrigger(); | |||
160 | if (isAdcChannelValid(channel)) { | |||
161 | addFastAdcChannel("TRIG", channel); | |||
162 | } | |||
163 | } | |||
164 | ||||
165 | void onTriggerChanged(efitick_t stamp, bool isPrimary, bool isRising) { | |||
166 | #ifdef TRIGGER_ADC_DEBUG_LED | |||
167 | toggleLed(0, 0); | |||
168 | #endif /* TRIGGER_ADC_DEBUG_LED */ | |||
169 | ||||
170 | #if 1 | |||
171 | // todo: support for 3rd trigger input channel | |||
172 | // todo: start using real event time from HW event, not just software timer? | |||
173 | ||||
174 | // call the main trigger handler | |||
175 | hwHandleShaftSignal(isPrimary ? 0 : 1, isRising, stamp); | |||
176 | #endif // 1 | |||
177 | } | |||
178 | ||||
179 | #endif // EFI_SHAFT_POSITION_INPUT && HAL_TRIGGER_USE_ADC && HAL_USE_ADC | |||
180 | ||||
181 | ||||
182 | 1 | void TriggerAdcDetector::init() { | ||
183 | #if ! EFI_SIMULATOR | |||
184 | ||||
185 | // todo: move some of these to config | |||
186 | ||||
187 | #if HAL_USE_ADC || EFI_UNIT_TEST | |||
188 | // 4.7k||5.1k + 4.7k | |||
189 | 1 | triggerInputDividerCoefficient = 1.52f; // = analogInputDividerCoefficient | ||
190 | ||||
191 | // we need to make at least minNumAdcMeasurementsPerTooth for 1 tooth (i.e. between two consequent events) | |||
192 | 1 | const int minNumAdcMeasurementsPerTooth = 10; // for 60-2 wheel: 1/(10*2*60/10000/60) = 500 RPM | ||
193 | 1 | minDeltaTimeForStableAdcDetectionNt = US2NT(US_PER_SECOND_LL * minNumAdcMeasurementsPerTooth * GPT_PERIOD_FAST / GPT_FREQ_FAST); | ||
194 | // we assume that the transition occurs somewhere in the middle of the measurement period, so we take the half of it | |||
195 | 1 | stampCorrectionForAdc = US2NT(US_PER_SECOND_LL * GPT_PERIOD_FAST / GPT_FREQ_FAST / 2); | ||
196 | ||||
197 | 1 | analogToDigitalTransitionCnt = 4; | ||
198 | 1 | digitalToAnalogTransitionCnt = 4; | ||
199 | ||||
200 | // used to filter out low signals | |||
201 | 1 | minDeltaThresholdWeakSignal = triggerVoltsToAdcDivided(0.05f); // 50mV | ||
202 | // we need to shift the default threshold even for strong signals because of the possible loss of the first tooth (after the sync) | |||
203 | 1 | minDeltaThresholdStrongSignal = triggerVoltsToAdcDivided(0.04f); // 5mV | ||
204 | ||||
205 | 1 | const triggerAdcSample_t adcDeltaThreshold = triggerVoltsToAdcDivided(0.25f); | ||
206 | 1 | adcDefaultThreshold = triggerVoltsToAdcDivided(2.5f); // this corresponds to VREF1 on Hellen boards | ||
207 | 1 | adcMinThreshold = adcDefaultThreshold - adcDeltaThreshold; | ||
208 | 1 | adcMaxThreshold = adcDefaultThreshold + adcDeltaThreshold; | ||
209 | ||||
210 | // these thresholds allow to switch from ADC mode to EXTI mode, indicating the clamping of the signal | |||
211 | // they should exceed the MCU schmitt trigger thresholds (usually 0.3*Vdd and 0.7*Vdd) | |||
212 | 1 | switchingThresholdLow = triggerVoltsToAdcDivided(1.0f); // = 0.2*Vdd (<0.3*Vdd) | ||
213 | 1 | switchingThresholdHigh = triggerVoltsToAdcDivided(4.0f); // = 0.8*Vdd (>0.7*Vdd) | ||
214 | #endif // HAL_USE_ADC || EFI_UNIT_TEST | |||
215 | ||||
216 | 1 | modeSwitchCnt = 0; | ||
217 | ||||
218 | 1 | reset(); | ||
219 | #endif // ! EFI_SIMULATOR | |||
220 | 1 | } | ||
221 | ||||
222 | 1 | void TriggerAdcDetector::reset() { | ||
223 | 1 | switchingCnt = 0; | ||
224 | 1 | switchingTeethCnt = 0; | ||
225 | #if HAL_USE_ADC || EFI_UNIT_TEST | |||
226 | // when the strong signal becomes weak, we want to ignore the increased noise | |||
227 | // so we create a dead-zone between the pos. and neg. thresholds | |||
228 | 1 | zeroThreshold = minDeltaThresholdWeakSignal / 2; | ||
229 | 1 | triggerAdcITerm = triggerAdcITermMin; | ||
230 | ||||
231 | 1 | adcThreshold = adcDefaultThreshold; | ||
232 | ||||
233 | 1 | isSignalWeak = true; | ||
234 | 1 | integralSum = 0; | ||
235 | 1 | transitionCooldownCnt = 0; | ||
236 | 1 | minDeltaThresholdCntPos = 0; | ||
237 | 1 | minDeltaThresholdCntNeg = 0; | ||
238 | #endif // HAL_USE_ADC || EFI_UNIT_TEST | |||
239 | ||||
240 | 1 | prevValue = 0; // not set | ||
241 | 1 | prevStamp = 0; | ||
242 | 1 | } | ||
243 | ||||
244 | ✗ | void TriggerAdcDetector::digitalCallback(efitick_t stamp, bool isPrimary, bool rise) { | ||
245 | #if !EFI_SIMULATOR && EFI_SHAFT_POSITION_INPUT | |||
246 | ✗ | if (curAdcMode != TRIGGER_ADC_EXTI) { | ||
247 | ✗ | return; | ||
248 | } | |||
249 | ||||
250 | UNUSED(isPrimary); | |||
251 | ||||
252 | ✗ | onTriggerChanged(stamp, isPrimary, rise); | ||
253 | ||||
254 | #if (HAL_TRIGGER_USE_ADC && HAL_USE_ADC) || EFI_UNIT_TEST | |||
255 | ✗ | if ((stamp - prevStamp) > minDeltaTimeForStableAdcDetectionNt) { | ||
256 | ✗ | switchingCnt++; | ||
257 | } else { | |||
258 | ✗ | switchingCnt = 0; | ||
259 | ✗ | switchingTeethCnt = 0; | ||
260 | } | |||
261 | ||||
262 | ✗ | if (switchingCnt >= digitalToAnalogTransitionCnt) { | ||
263 | ✗ | switchingCnt = 0; | ||
264 | // we need at least 3 wide teeth to be certain! | |||
265 | // we don't want to confuse them with a sync.gap | |||
266 | ✗ | if (switchingTeethCnt++ > 3) { | ||
267 | ✗ | switchingTeethCnt = 0; | ||
268 | ✗ | prevValue = rise ? 1: -1; | ||
269 | ✗ | setTriggerAdcMode(TRIGGER_ADC_ADC); | ||
270 | } | |||
271 | } | |||
272 | #endif // (HAL_TRIGGER_USE_ADC && HAL_USE_ADC) || EFI_UNIT_TEST | |||
273 | ||||
274 | ✗ | prevStamp = stamp; | ||
275 | #endif // !EFI_SIMULATOR && EFI_SHAFT_POSITION_INPUT | |||
276 | } | |||
277 | ||||
278 | 60000 | void TriggerAdcDetector::analogCallback(efitick_t stamp, triggerAdcSample_t value) { | ||
279 | #if ! EFI_SIMULATOR && ((HAL_TRIGGER_USE_ADC && HAL_USE_ADC) || EFI_UNIT_TEST) | |||
280 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 60000 times.
|
1/2✗ Decision 'true' not taken.
✓ Decision 'false' taken 60000 times.
|
60000 | if (curAdcMode != TRIGGER_ADC_ADC) { |
281 | ✗ | return; | ||
282 | } | |||
283 | ||||
284 | #ifdef TRIGGER_ADC_DUMP_BUF | |||
285 | dumpBuf[dumpBufCnt] = value; | |||
286 | dumpBufCnt = (dumpBufCnt + 1) % dumpBufNum; | |||
287 | #endif /* TRIGGER_ADC_DUMP_BUF */ | |||
288 | ||||
289 | // <1V or >4V? | |||
290 |
2/4✓ Branch 0 taken 60000 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 60000 times.
|
1/2✗ Decision 'true' not taken.
✓ Decision 'false' taken 60000 times.
|
60000 | if (value >= switchingThresholdHigh || value <= switchingThresholdLow) { |
291 | ✗ | switchingCnt++; | ||
292 | } else { | |||
293 | //switchingCnt = 0; | |||
294 | 60000 | switchingCnt = maxI(switchingCnt - 1, 0); | ||
295 | } | |||
296 | ||||
297 | 60000 | int delta = value - adcThreshold; | ||
298 | 60000 | int aDelta = absI(delta); | ||
299 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 60000 times.
|
1/2✗ Decision 'true' not taken.
✓ Decision 'false' taken 60000 times.
|
60000 | if (isSignalWeak) { |
300 | // todo: detect if the sensor is disconnected (where the signal is always near 'ADC_MAX_VALUE') | |||
301 | ||||
302 | // filter out low signals (noise) | |||
303 | ✗ | if (delta >= minDeltaThresholdWeakSignal) { | ||
304 | ✗ | minDeltaThresholdCntPos++; | ||
305 | } | |||
306 | ✗ | if (delta <= -minDeltaThresholdWeakSignal) { | ||
307 | ✗ | minDeltaThresholdCntNeg++; | ||
308 | } | |||
309 | } else { | |||
310 | // we just had a strong signal, let's reset the counter | |||
311 |
2/2✓ Branch 0 taken 41274 times.
✓ Branch 1 taken 18726 times.
|
2/2✓ Decision 'true' taken 41274 times.
✓ Decision 'false' taken 18726 times.
|
60000 | if (delta >= minDeltaThresholdWeakSignal) { |
312 | 41274 | minDeltaThresholdCntPos = DELTA_THRESHOLD_CNT_HIGH; | ||
313 | } | |||
314 |
2/2✓ Branch 0 taken 11332 times.
✓ Branch 1 taken 48668 times.
|
2/2✓ Decision 'true' taken 11332 times.
✓ Decision 'false' taken 48668 times.
|
60000 | if (delta <= -minDeltaThresholdWeakSignal) { |
315 | 11332 | minDeltaThresholdCntNeg = DELTA_THRESHOLD_CNT_HIGH; | ||
316 | } | |||
317 | 60000 | minDeltaThresholdCntPos--; | ||
318 | 60000 | minDeltaThresholdCntNeg--; | ||
319 | // we haven't seen the strong signal (pos or neg) for too long, maybe it's lost or too weak? | |||
320 |
2/4✓ Branch 0 taken 60000 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 60000 times.
|
1/2✗ Decision 'true' not taken.
✓ Decision 'false' taken 60000 times.
|
60000 | if (minDeltaThresholdCntPos <= 0 || minDeltaThresholdCntNeg <= 0) { |
321 | // reset to the weak signal mode | |||
322 | ✗ | reset(); | ||
323 | ✗ | return; | ||
324 | } | |||
325 | } | |||
326 | ||||
327 | // the threshold should always correspond to the averaged signal. | |||
328 | 60000 | integralSum += delta; | ||
329 | // we need some limits for the integral sum | |||
330 | // we use a simple I-regulator to move the threshold | |||
331 | 60000 | adcThreshold += (float)integralSum * triggerAdcITerm; | ||
332 | // limit the threshold for safety | |||
333 | 60000 | adcThreshold = maxF(minF(adcThreshold, adcMaxThreshold), adcMinThreshold); | ||
334 | ||||
335 | // now to the transition part... First, we need a cooldown to pre-filter the transition noise | |||
336 |
2/2✓ Branch 0 taken 24909 times.
✓ Branch 1 taken 35091 times.
|
2/2✓ Decision 'true' taken 24909 times.
✓ Decision 'false' taken 35091 times.
|
60000 | if (transitionCooldownCnt-- < 0) |
337 | 24909 | transitionCooldownCnt = 0; | ||
338 | ||||
339 | // we need at least 2 different measurements to detect a transition | |||
340 |
2/2✓ Branch 0 taken 1 time.
✓ Branch 1 taken 59999 times.
|
2/2✓ Decision 'true' taken 1 time.
✓ Decision 'false' taken 59999 times.
|
60000 | if (prevValue == 0) { |
341 | // we can take the measurement only from outside the dead-zone | |||
342 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1/2✓ Decision 'true' taken 1 time.
✗ Decision 'false' not taken.
|
1 | if (aDelta > minDeltaThresholdWeakSignal) { |
343 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1 | prevValue = (delta > 0) ? 1 : -1; | |
344 | } else { | |||
345 | ✗ | return; | ||
346 | } | |||
347 | } | |||
348 | ||||
349 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 60000 times.
|
1/2✗ Decision 'true' not taken.
✓ Decision 'false' taken 60000 times.
|
60000 | if (isSignalWeak) { |
350 | ✗ | if (minDeltaThresholdCntPos >= DELTA_THRESHOLD_CNT_LOW && minDeltaThresholdCntNeg >= DELTA_THRESHOLD_CNT_LOW) { | ||
351 | // ok, now we have a legit strong signal, let's restore the threshold | |||
352 | ✗ | isSignalWeak = false; | ||
353 | ✗ | integralSum = 0; | ||
354 | ✗ | zeroThreshold = minDeltaThresholdStrongSignal; | ||
355 | } else { | |||
356 | // we cannot trust the weak signal! | |||
357 | ✗ | return; | ||
358 | } | |||
359 | } | |||
360 | ||||
361 |
2/2✓ Branch 0 taken 52608 times.
✓ Branch 1 taken 7392 times.
|
2/2✓ Decision 'true' taken 52608 times.
✓ Decision 'false' taken 7392 times.
|
60000 | if (transitionCooldownCnt <= 0) { |
362 | // detect the edge | |||
363 | 52608 | int transition = 0; | ||
364 |
4/4✓ Branch 0 taken 40745 times.
✓ Branch 1 taken 11863 times.
✓ Branch 2 taken 924 times.
✓ Branch 3 taken 39821 times.
|
2/2✓ Decision 'true' taken 924 times.
✓ Decision 'false' taken 51684 times.
|
52608 | if (delta > zeroThreshold && prevValue == -1) { |
365 | // a rising transition found! | |||
366 | 924 | transition = 1; | ||
367 | } | |||
368 |
4/4✓ Branch 0 taken 11214 times.
✓ Branch 1 taken 40470 times.
✓ Branch 2 taken 924 times.
✓ Branch 3 taken 10290 times.
|
2/2✓ Decision 'true' taken 924 times.
✓ Decision 'false' taken 50760 times.
|
51684 | else if (delta <= -zeroThreshold && prevValue == 1) { |
369 | // a falling transition found! | |||
370 | 924 | transition = -1; | ||
371 | } | |||
372 | else { | |||
373 | 50760 | return; // both are positive/negative/zero: not interested! | ||
374 | } | |||
375 | ||||
376 | 1848 | onTriggerChanged(stamp - stampCorrectionForAdc, true, transition == 1); | ||
377 | // let's skip some nearest possible measurements: | |||
378 | // the transition cannot be SO fast, but the jitter can! | |||
379 | 1848 | transitionCooldownCnt = transitionCooldown; | ||
380 | ||||
381 | // it should not accumulate too much | |||
382 | 1848 | integralSum = 0; | ||
383 | #if 0 | |||
384 | // update triggerAdcITerm | |||
385 | efitimeus_t deltaTimeUs = NT2US(stamp - prevStamp); | |||
386 | if (deltaTimeUs > 200) { // 200 us = ~2500 RPM (we don't need this correction for large RPM) | |||
387 | triggerAdcITerm = 1.0f / (triggerAdcITermCoef * deltaTimeUs); | |||
388 | triggerAdcITerm = std::max(triggerAdcITerm, triggerAdcITermMin); | |||
389 | } | |||
390 | #endif // 0 | |||
391 | ||||
392 | 1848 | prevValue = transition; | ||
393 | } | |||
394 | ||||
395 | #ifdef EFI_SHAFT_POSITION_INPUT | |||
396 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 9240 times.
|
1/2✗ Decision 'true' not taken.
✓ Decision 'false' taken 9240 times.
|
9240 | if (switchingCnt >= analogToDigitalTransitionCnt) { |
397 | ✗ | switchingCnt = 0; | ||
398 | // we need at least 3 high-signal teeth to be certain! | |||
399 | ✗ | if (switchingTeethCnt++ > 3) { | ||
400 | ✗ | switchingTeethCnt = 0; | ||
401 | ||||
402 | ✗ | setTriggerAdcMode(TRIGGER_ADC_EXTI); | ||
403 | ||||
404 | // we don't want to loose the signal on return | |||
405 | ✗ | minDeltaThresholdCntPos = DELTA_THRESHOLD_CNT_HIGH; | ||
406 | ✗ | minDeltaThresholdCntNeg = DELTA_THRESHOLD_CNT_HIGH; | ||
407 | // we want to reset the thresholds on return | |||
408 | ✗ | zeroThreshold = minDeltaThresholdStrongSignal; | ||
409 | ✗ | adcThreshold = adcDefaultThreshold; | ||
410 | // reset integrator | |||
411 | ✗ | triggerAdcITerm = triggerAdcITermMin; | ||
412 | ✗ | integralSum = 0; | ||
413 | ✗ | transitionCooldownCnt = 0; | ||
414 | ✗ | return; | ||
415 | } | |||
416 | } else { | |||
417 | // we don't see "big teeth" anymore | |||
418 | 9240 | switchingTeethCnt = 0; | ||
419 | } | |||
420 | #endif // EFI_SHAFT_POSITION_INPUT | |||
421 | ||||
422 | 9240 | prevStamp = stamp; | ||
423 | #else | |||
424 | UNUSED(stamp); UNUSED(value); | |||
425 | #endif // ! EFI_SIMULATOR && ((HAL_TRIGGER_USE_ADC && HAL_USE_ADC) || EFI_UNIT_TEST) | |||
426 | } | |||
427 | ||||
428 | 1 | void TriggerAdcDetector::setWeakSignal(bool isWeak) { | ||
429 | #if HAL_USE_ADC || EFI_UNIT_TEST | |||
430 | 1 | isSignalWeak = isWeak; | ||
431 |
1/2✓ Branch 0 taken 1 time.
✗ Branch 1 not taken.
|
1/2✓ Decision 'true' taken 1 time.
✗ Decision 'false' not taken.
|
1 | if (!isSignalWeak) { |
432 | 1 | minDeltaThresholdCntPos = minDeltaThresholdCntNeg = DELTA_THRESHOLD_CNT_LOW; | ||
433 | } else { | |||
434 | ✗ | minDeltaThresholdCntPos = minDeltaThresholdCntNeg = 0; | ||
435 | } | |||
436 | #endif // HAL_USE_ADC || EFI_UNIT_TEST | |||
437 | 1 | } | ||
438 | ||||
439 | ✗ | triggerAdcMode_t getTriggerAdcMode(void) { | ||
440 | ✗ | return trigAdcState.curAdcMode; | ||
441 | } | |||
442 | ||||
443 | ✗ | float getTriggerAdcThreshold(void) { | ||
444 | ✗ | return trigAdcState.adcThreshold; | ||
445 | } | |||
446 | ||||
447 | ✗ | int getTriggerAdcModeCnt(void) { | ||
448 | ✗ | return trigAdcState.modeSwitchCnt; | ||
449 | } | |||
450 |