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ABSTRACT 

Combustion quality diagnostic techniques utilizing flame 
ionization measurement, with the spark plug as a 
sensor, have been in production for some time.  This 
acquired “Ionsense” signal represents the changes in 
the electrical conductivity of the flame during each 
combustion event.  The present analog versions of this 
sensor are used to detect knock and engine misfire, and 
can be used for cam phasing.  However, current 
methodology has fallen short of unlocking the wealth of 
combustion thermodynamics information encrypted in 
the ion sense signal. 

Digital Signal Processing incorporating Artificial Neural 
Networks (ANN) is well suited for handling the statistical 
fluctuations of combustion.  However to obtain 
acceptable accuracy, traditional ANN implementations 
can require processing resources beyond the capability 
of current engine controllers.  Using Air/Fuel Ratio and 
Location of Peak Pressure as examples, this paper 
explores the practicality of performing real-time digital 
processing of the Ionsense signal to extract additional 
combustion information.  An assessment of required 
processor resources is made and alternative pre-
processing employing a pattern recognition wavelet filter 
is proposed.  As a result the post-processed signal 
seems to be immune to some engine combustion 
fluctuations not included in the ANN training. 

The concepts discussed were successfully 
demonstrated throughout the normal operating range, in 
real-time, on a 6-cylinder engine.  Examples of 
performance data are included. 

INTRODUCTION 

Theoretical foundations linking the Ionsense signal with 
engine thermodynamics and combustion kinetics were 
laid by a group of scientists at Lund Institute of 
Technology, Sweden [1, 2].  The attempt, however, fell 
short of producing a robust theoretical model since the 
modeling of molecule formation and destruction kinetics 
in combustion, even if simplified, is extremely complex 
(see e.g. [3]).  Consequently, the numerous attempts to 
demonstrate Ionsense “advanced functionality”, i.e. the 
ability to provide information on the location of peak 
pressure, air to fuel ratio, percentage of mass fraction 
burned, etc., proved to be successful only in a narrow 
range of automotive engine operating conditions [1 – 7] 
(leading papers are quoted here only). 

As was pointed out in numerous publications, fuel type, 
fuel additives [8], and fluctuation in early flame 
development [9] made the interpretation of the Ionsense 
signal extremely difficult.  Remembering that air 
humidity, spark plug performance, engine aging, etc. 
may also affect the combustion process; a 
straightforward interpretation of the Ionsense signal 
appears to be almost impossible.  Consequently, 
conventional analytical methods surely do not provide 
the robustness expected for mass production 
applications.  In an attempt to solve this formidable 
problem, Halmstad University scientists together with 
Mecel, an independent subsidiary of Delphi Corporation, 
proposed the application of artificial neural networks 
(ANN) for Ionsense data interpretation (see e.g.: [10 - 
12]).  Indeed, the statistical fluctuations of combustion 
are well handled by the trained ANN-based Ionsense 
sensor which was demonstrated in experiments 
described by the above mentioned research group [11, 
12].  Clearly, a very comprehensive ANN training 
covering a broad range of possible engine operating 
conditions would assure the correct data interpretation, 
at least, in the statistical sense, enough to enhance the 
performance of the engine control system. 

2003-01-1119 

Real-Time Digital Signal Processing of 
Ionization Current for Engine Diagnostic and Control 

Gerard W. Malaczynski and Michael E. Baker 
Delphi Corporation, Technical Center Brighton 

 
Copyright © 2003 SAE International



The implementation of an ANN block into the Ionsense 
signal processing defines the sensor electronics.  It 
becomes Digital Signal Processing (DSP)-based with all 
the issues associated with this technique.  The option of 
designing and manufacturing a dedicated ANN chip 
seems to be unacceptable due to the cost and lack of 
algorithm flexibility.  The only option seems to be an 
ANN algorithm, developed as a result of bench training, 
executed by an on-board microprocessor in real-time.  
Therefore, the next step in the introduction of Ionsense 
advanced features for mass production would be to 
prove its ability to operate in real-time with the support of 
currently available or next generation, automotive-
approved, microprocessors.  In other words, the 
assessment of required computation power with a 
realistically defined signal-processing algorithm 
becomes a priority in the development activity leading to 
an advanced version of the Ionsense soft sensor.  This 
paper presents an attempt in this direction. 

In addition, the troublesome problem of the ANN 
algorithm formulation that requires extensive, “never 
guaranteed to be fully complete”, training is addressed.  
Namely, the proposed approach delivers signal 
processing results that seem to be immune to some 
engine combustion fluctuations not included in the ANN 
training.  Although the activity described here is still far 
from complete, the results presented continue the earlier 
efforts [11, 12] in implementing statistical methods for 
Ionsense signal processing. 

ALTERNATIVE DSP ALGORITHMS 

As previously stated, the ANN subsystem requires 
extensive training on pre-production data samples.  Yet, 
once established, it may represent a simple 
computational algorithm easily executed either by a 
dedicated DSP chip or by the on-board microprocessor.  
The ANN algorithm complexity depends on the input 
vector size to the first, hidden neuron layer.  This 
complexity directly affects its ability to execute in real-
time – between adjacent combustion events.  If the 
Location of Peak Pressure (LPP) is to be extracted from 
the Ionsense signal, the input vector size reflects the 
eventual system resolution.  Specifically, if the required 
resolution is ½ degree of crank angle, and the window of 
interest covers, say, 60 degrees, the signal input vector 
size would be 120.  In addition, as previously 
demonstrated by others [11, 12], the desired correlation 
between the ANN output and the actual location of peak 
pressure is acquired only if Manifold Absolute Pressure 
(MAP), engine speed (RPM), and spark advance (SA) 
are also fed to the ANN input.  This increases the vector 
size to 123.  This is far too large if multi-layer perceptron 
architecture is to be emulated in real-time.  This real-
time operation requires a data acquisition period 
(window) and, beginning with the closure of this window, 
processing completion prior to the next cylinder event.  
One of the options available [11] is the input data 
reduction achieved with the statistical method called 
Principal Component Analysis (PCA).  Briefly, this 
method [13] generates a new set of input vector 

components from a linear combination of the original 
vector components.  All the new components are 
orthogonal to each other so there is no redundant 
information.  However, it is commonplace for the sum of 
the variances of the first few new components to almost 
match the total variance of the components of the 
original vector.  Thus, the new vector can be 
substantially downsized without a significant loss in the 
information needed for further processing.  In the 
language of DSP, it means that the algorithm is 
introduced, in the form of a matrix consisting of 120 input 
elements (the initial vector size of the Ionsense signal in 
our example) and, say, an output consisting of 10 
elements.   Such a size reduction was proven not to 
affect the outcome of the ANN processing when used for 
Ionsense data interpretation [11].  Input data reduction 
from 123 elements to 13 elements (reduced in size to a 
10 element Ionsense vector plus MAP, RPM, and SA) 
makes even a fairly complex ANN emulation feasible in 
real-time at all engine speeds.  The application of the 
PCA, however, does not come without penalty.  
Following our example, the PCA method translates to an 
additional algorithm represented by a matrix consisting 
of 120 rows (input size), and 10 columns (output size).  
The reduced output is a result of matrix multiplication 
performed on the 120-element Ionsense vector input.  
This matrix multiplication actually consumes more 
computer power than any ANN algorithm used in our 
experiments.  As is shown below, this defines a limit for 
the maximum engine speed within which our 
experimental set-up (modeled in Mathworks’ Simulink) 
could operate in real-time, given available signal 
processing speed and resources.   To illustrate DSP 
resource requirements for a typical ANN-based ion 
current soft sensor supported by a PCA data reduction 
matrix, an estimate was made for an algorithm emulating 
a 15-neuron hidden layer and 1-neuron output layer.  It 
was assumed that the hidden layer is fed from a PCA 
matrix having 10 outputs plus three key engine operating 
parameter (MAP, rpm, Spark Advance) for a total of 13 
elements.  The results are presented in Table 1.  In the 
process of calculating number of multiply-accumulate 
instructions it was found that more than 2/3 must be 
allocated to serve the PCA data reduction matrix! 

 Motorola 
683XX 

Motorola 
DSP 
56800 

Motorola 
PowerPC500 

Clock 
Speed 

32 MHz 150 MHz 50 MHz 

Execution 
Time 

5.3 ms 50 µs 110 µs 

A/D 
Conversion 

14 µs 6 µs 8 µs 

Table 1. An example of DSP Resource Requirements for a Typical 
Ion Current Soft Sensor (a PCA data reduction matrix 
providing 13 inputs to the ANN consisting of 15-neuron 
hidden layer and 1-neuron output layer).  Resource 
requirements are calculated for a sampling rate of 40 kHz. 



The application of the Principal Component Analysis 
defines the risk, or better, the robustness of the 
Ionsense soft sensor.  As long as the PCA is formulated 
with extensive pre-production collected data sets and 
the ANN is subsequently well trained, the system 
guarantees valued performance.  That is due to the fact 
that once the algorithm is formulated, it can be executed 
in real-time with a known, pre-defined statistical error.  
However, the statistical error is guaranteed to remain 
within the limit established in pre-production tests only if 
all real-time conditions are covered during the PCA 
formulation and ANN training phase.  This is partly due 
to the fact that the ANN represents artificial intelligence; 
it cannot perform any better, or extrapolate beyond, what 
it was taught during training.  Another limitation results 
from the input signal transformation performed by the 
PCA matrix.  An orthogonal set of components of the 
linearly transformed ion current signal remains nearly 
orthogonal as long as any in-service, real-time input 
closely emulates past signals used in the pre-production 
training.  However, if the in-service signal characteristics 
differ substantially from those the system was exposed 
to during PCA matrix formulation, the PCA output 
compromises the transformation, the output becomes 
strongly non-orthogonal, and the whole system fails.  
Consequently, the Ionsense soft sensor supported by 
the PCA/ANN algorithm guarantees faultless operation 
only if the pre-production algorithm formulation, including 
the ANN training, resulted from an experimental data set 
representing all future engine operating conditions.  In 
practice, this might be impossible or at least extremely 
time and resource consuming.  The only reasonable 
solution, in the case discussed here, seems to be a 
limited training with well chosen, most-representative 
sets of operating conditions.  Then, possibly together 
with a fuzzy logic block overruling unusual sensor 
readings, the Ionsense system would enhance the 
engine controller performance under “typical” driving 
conditions. 

The system robustness could be substantially improved 
if the ANN training is conducted with inputs representing 
straightforward factors defining engine thermodynamics 
rather than their coded version in the form of the 
Ionsense signal.  An example of such an approach 
would be to feed to the ANN the position of a local, post-
flame Ionsense peak, which theoretically represents the 
culmination of the compression-induced heating [1].  
Now, the input deals with a component having a clear 
meaning rather than a fuzzy-defined, stochastic 
representation of the combustion process, i.e., the whole 
Ionsense signal.  Then, not only is the size of the input 
to the ANN substantially reduced, but also, since the 
post-flame, local Ionsense peak correlates well with the 
location of peak pressure, the system could serve as a 
virtual in-cylinder pressure sensor.  Reported [1] 
correlation between Ionsense post-flame local peak 
location and true location of peak pressure is close to 
80% and can be substantially improved if the ANN is 
trained with side parameters such as spark advance, 
engine speed, and engine load. 

Attempts to recover information on the post-flame local 
Ionsense peak have been reported by others [14].  
Unfortunately, the proposed parameterization of the 
Ionsense signal by curve fitting (employing Gaussian 
functions) may fail if the local Ionsense peak in question 
is not well pronounced.  It may also require intensive 
computations that may be beyond what current 
generation microprocessor can handle in real-time. 

If the same technique is used to recover air-to-fuel ratio 
information encoded in the flame front, ion current peak 
location provides even less impressive results.  Not only 
the peak location, but also its magnitude and integral 
over the flame front zone are needed.  The species 
ionization in the combustion zone, however, is without 
any doubt represented by the Ionsense signal (see for 
example Langmuir probe characteristics and discussion 
of their interpretation in [15] or [16]).  Therefore, the key 
to extracting the encoded information seems to be 
efficient filtration and processing to unmask and identify 
certain desired signal features.  Since the signal features 
in question are not solely characterized by the frequency 
spectrum, their position on the time or angular scale is 
critical.  Wavelet-based signal processing seems to 
provide the right tool.  A side benefit of such a technique 
is the fact that the wavelet filter is a digital filter with a 
low level of complexity.  Therefore, it makes an ideal, 
computationally-efficient algorithm representation in the 
DSP system. 

Our bench test results for both data reduction methods 
supporting the ANN data interpretation block are 
depicted in Figures 1A and 1B.  One algorithm emulated 
the PCA/ANN approach while the other used Wavelet-
based extraction of three signal features considered 
critical for efficient neural network training.  
Consequently, the size of the input vector to the ANN 
preceded with the PCA matrix was 10 elements along 
with key engine operating parameters, while the input 
vector size to the ANN preceded with the Wavelet filter 
was only 3 elements plus the same engine parameters.  
Considering the fact that the ANN training results are 
slightly different each time the training is performed, 
even with the same set of the input data, the soft sensor 
seems to deliver the same performance regardless of 
the data reduction method. 



 

Figure 1A: Soft Ionsense, ANN-based sensor performance in 
detecting location of peak pressure position using the PCA 
matrix input data reduction. 
Correlation coefficient = 0.99146, RMS = 0.80542 

 

Figure 1B: Soft Ionsense, ANN-based sensor performance in 
detecting location of peak pressure position using the 
Wavelet-based signal feature extraction. 
Correlation coefficient = 0.99098, RMS = 0.88859 

The performance of the soft Ionsense LPP sensor 
depends on the engine type since the ion current 
represents a “signature” of the engine’s unique 
thermodynamics.  Consequently, the ANN architecture 
would vary with engine type, and would require 
application-specific training.  Nevertheless, the ultimate 
sensor performance is similar regardless of the engine 
type (see Figure 2) and, in the case of LPP, depends on 
the sampling rate to define the resolution of the system.  
The results presented in Figure 2 are based on an 
engine speed-adjustable sampling rate to maintain a 
constant resolution of 1 crank angle degree per sample.  
Slightly better results (see Figure 1) are achieved with a 
constant sampling rate of 40 kHz, which provides 

improved angular resolution, especially at low engine 
speeds. 

 

Figure 2: Ionsense LPP performance for a different engine from that 
represented in Figure 1 and slightly compromised 
sampling rate. 
Correlation coefficient = 0.97984, RMS = 0.78941 

While the LPP feature is clearly correlated with the local, 
post-flame ion current peak location, other advanced 
diagnostics may be strongly affected by the fuel type 
and fuel contaminants.  Both affect the Ionsense signal 
(illustrated in Figure 3A). 

 

Figure 3: An example of Ionsense signals acquired when different 
fuel types and different fuel contaminants were used. 
A – original Ionsense signals 
B – same signals normalized. 
Fuels used: Standard 87 octane, Standard 87 octane+10% 
ethanol, California Phase II, Standard 87 octane + 10% 
ethanol + commercial fuel additive. 



While the content of different crude oil fractions, ethanol, 
etc., certainly affect combustion thermodynamics, other 
additives, offered to “increase engine performance”, may 
strongly affect the electrical conductivity of the flame [15, 
16] and thus alter the Ionsense signal amplitude.  
Typical examples of the latter are commercial fuel 
additives containing alkalis that dramatically boost flame 
conductivity.  Therefore, when the air-to-fuel ratio is to 
be extracted from the Ionsense signal, input signal 
normalization may be needed to compensate for 
combustion thermodynamic irrelevant effects.  An 
example of such normalization is depicted in Figure 3 B.  
Since the normalization might be performed against any 
specific feature of the Ionsense signal, improved results 
are obtained if the signal processing is tuned to extract 
such a feature.  This again indicates that the Wavelet-
based algorithm formulation may be superior to the PCA 
approach.  

An example of Air/Fuel Ratio (AFR) soft sensor 
performance with data acquired over a broad range of 
engine operating conditions, with four different fuel 
compositions, is depicted in Figure 4. 

Figure 5A: Soft-sensor response as a function of number of 
consecutive combustion events taken as a running 
average – Statistical Correlation 

 

 

Figure 4: Ionsense Relative Air Fuel Ratio (λ) performance for an 
experiment run with four different fuel compositions: 
Standard 87 octane, Standard 87 octane + 10% ethanol, 
California Phase II, Standard 87 octane + ethanol + 
commercial fuel additive. 
Correlation coefficient = 0.97863, RMS = 3.2343% Figure 5B: Soft-sensor response as a function of number of 

consecutive combustion events taken as a running 
average – RMS Error. 

It must be stated that the cycle-to-cycle, stochastic, 
fluctuation of Ionsense signal strongly affects sensor 
performance.  The above results (for both LPP and λ) 
represent running averages of 5 consecutive individual 
cylinder combustion events.  Figure 5 indicates how the 
number of events averaged influences the sensor output 
accuracy.  In this data, the ripples appearing for 
averages created over 50 consecutive events are due to 
the data acquisition routine rather than any real system 
performance.  It is evident that the running average of 3 
to 10 most likely defines the best compromise between 
system accuracy and response time. 

While the air-to-fuel ratio performance presented here 
clearly indicates that the Ionsense method cannot 
replace the widely accepted Narrow-Band 
(stoichiometric switching) Oxygen Sensor, it may 
compete favorably with the Wide-Band Oxygen Sensors 
used in some applications.  A niche for this application 
may also exist for monitoring the Air/Fuel Ratio during 
cold starts or possibly with advanced On-Board 
Diagnostics. 

 



A side benefit of using the Wavelet approach is the 
availability of the compressed Ionsense signal data.  For 
example, if a three-level decomposition block is used (a 
fair assumption for most Ionsense applications), the 
achieved compression is 1/8th the original data size.  
This might be critical in pre-production testing when a 
very extensive data set must be collected for successful 
ANN training.  The PCA version would obviously require 
8-times more data storage. 

EXPERIMENTAL SETUP 
AND REAL-TIME EXPERIMENT 

Due to the sensitivity of the proposed algorithms to the 
sampling rate of the analog Ionsense signal, the data 
acquisition system targeting a bench-type neural 
network training sequence was combined with a real-
time functional model.  Such an arrangement assures 
that the data reduction and ANN blocks will be exposed 
to identically phased signals when training and when 
serving as a real-time soft sensor.   A block diagram of 
the Ionsense Location of Peak Pressure soft-sensor 
utilizing the PCA data reduction matrix is presented in 
Figure 6.  The pre-production data acquisition stage 
requires storage of the Ionsense signal array, together 
with engine speed, MAP, and spark advance.  In 
addition, the Location of the Peak Pressure extracted 
from the independent in-cylinder pressure sensor is 
stored and used for ANN training.  Once the PCA matrix 
is defined and the ANN trained, the full algorithm 
emulated by the block diagram is engaged.  This allows 
verification in real-time of the PCA/ANN system 
performance.  A mass produced version would, of 
course, not employ an in-cylinder pressure transducer.  

Figure 7: Simplified functional block diagram utilizing a wavelet filter 
bank for data extraction. 

 

The depicted system extracts AFR information from the 
Ionsense signal.  Now, instead of formulating the PCA 
matrix preceding the ANN training as in the PCA/ANN 
approach, the ANN can be trained as depicted in Figure 
8. 

 

Figure 6: Simplified functional block diagram representing LPP 
extraction algorithm utilizing the PCA matrix for data 
reduction. 

As presented in Figure 7, the λ extractor utilizes a 
wavelet filter bank instead of the PCA matrix.  The 
software “architecture” becomes dramatically simplified.  
The code processes a sequential flow of consecutive 
data points arriving from the A/D converter instead of the 
Ionsense vector array required by the PCA approach.  
The input of the ANN block receives essential 
information for data interpretation in the form of signal 
features representing “physics of the process” rather 
than statistical information that may be incomplete if the 
PCA matrix design is compromised, say, due to 
experimental limitations. 

Figure 8: The ANN training with data acquired with a multi-level 
wavelet decomposition filter. 



The ANN training should cover inputs representing a 
wide range of engine operating conditions.  Training is 
performed via the playback of data acquired earlier; 
such data acquisition may include dynamometer and 
road tests.  Once the supervised output meets a desired 
quality standard, the computational algorithm can be 
frozen.  It will then become a part of the global control 
algorithm for the specific type of engine. 

An instrument panel emulated when running a real-time 
experiment with the Control Desk software offered by 
dSPACE is illustrated in Figure 9. 

 

Both, PCA/ANN and Wavelet/ANN algorithms were 
emulated using Mathworks’ Simulink, DSP Blockset, and 
Neural Network toolboxes [17].  The capability of 
performing the required computations in real-time was 
demonstrated using Mathworks’ Real-Time Interface and 
dSPACE (GmbH) PC-based hardware.  A 480 MHz, 
Motorola Power PC-based DS1005 board together with 
appropriate A/D conversion and timing boards was used.  
The following configurations were real-time tested: 

1. AFR model supported by a wavelet filter bank: 
The model was operated with a constant sampling 
rate of 40 kHz and with synchronization of the 
Sampling Window & Data Trigger Block (see Figure 
7) provided by Electronic Spark Timing (EST) 
pulses. 

Figure 9: dSPACE dashboard emulation when running LPP soft 
sensor in real-time. 

The throughput demand was assessed for individual 
subsystems.  It was found that the critical demand is 
made during pre-processing (windowing, data sampling, 
and feature extraction/data reduction) rather than post-
processing (ANN).  With one sample per Crank Angle 
Degree, the maximum required sample rate is 36 kHz at 
6000 rpm.  With the asynchronous model, the sampling 
rate could be increased up to 180 kHz with no observed 
throughput problems.  It is believed that post-processing 
occurs sufficiently fast enough to not be a problem at 
high speed even in eight-cylinder applications. 

2. LPP model supported by a PCA matrix: 
When EST pulses were used to synchronize the 
Sampling Window & Data Trigger block, the 
sampling rate was limited to 35 kHz.  The slower 
sampling rate is due to the fact that PCA data 
reduction matrix is more complex than the wavelet 
filter and the DS1005 board cannot support higher 
sampling rates in real-time.  In other system 
embodiments, however, a DS4002 timing board was 
implemented to replace the functionality of the 
Sample Window & Data Trigger block.  It is also 
synchronized with EST pulses, yet liberates enough 
computation power to allow for faster sampling 
rates.  In this arrangement, the system operates as 
an asynchronous model in the sense that data 
acquisition block trigger rate varies while the 
software timebase is a constant 50 kHz.  A variable 
sampling rate, in turn, allows maintaining a near 
constant distance between samples on the 
crankshaft angular scale regardless of the engine 
speed. 

The AFR feature, however, suffers from another 
limitation when Ionsense technology is combined with 
the inductive ignition system.  The early opening of the 
sampling window (required to extract flame-front zone 
features) experiences strong interference from the coil 
ringing.  Typically, coil ringing masks the majority of the 
AFR information in the signal at engine speeds above 
3000 rpm. 



CONCLUSION 

The capability of performing the required computations 
in real-time was demonstrated using both the PCA/ANN 
and Wavelet/ANN models with a relatively high degree 
of architecture complexity.  The low-pass decomposition 
segment of a wavelet filter bank allows for significant 
reduction of ionization current data storage, which may 
be critically important when collecting an extensive 
database for ANN training.  At the same time, the 
feature extraction inherently associated with wavelet 
transformation (pattern recognition) facilitates the soft 
Ionsense engine diagnostic application.  Intuitively, the 
extraction of Ionsense signal features supported by the 
thermodynamics and chemistry of combustion should 
provide results more immune to situations not covered 
during the ANN training.  In addition, the wavelet-based 
signal filtering and data reduction method proves to be 
more throughput-efficient.  Conversely, the ANN trained 
with data-reduced parameters provided by the statistical 
PCA matrix requires more DSP resources and is 
certainly not immune to input variation not covered by 
the pre-production matrix formulation.  The next 
generation of on-board automotive microprocessors will 
certainly facilitate the implementation of advanced 
Ionsense features for engine diagnostic and control 
applications. 
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