
Embedded Software Control Design for an Electronic Throttle Body

by

Paul G. Griffiths

B.S. Mechanical Engineering (Michigan Technological University) 2000

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Masters of Science

in

Mechanical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor J. Karl Hedrick, Chair
Professor Pravin Varaiya

2002

The dissertation of Paul G. Griffiths is approved:

Chair Date

Date

Date

University of California, Berkeley

2002

Embedded Software Control Design for an Electronic Throttle Body

Copyright 2002

by

Paul G. Griffiths

1

Abstract

Embedded Software Control Design for an Electronic Throttle Body

by

Paul G. Griffiths

Masters of Science in Mechanical Engineering

University of California, Berkeley

Professor J. Karl Hedrick, Chair

This paper examines the complete design of an electronic throttle control system.

This system is a safety-critical, embedded control application, and so the design of the

system extends beyond the analysis of the closed-loop behavior of the plant and a controller.

The necessary reliability and ability to detect and handle hardware failures creates particular

hardware requirements. Differential equations that describe the hardware are derived so

that control strategies can be designed and simulated before they are tested on the hardware.

The presence of Coulomb and static friction in the dynamics of the throttle plate motivates

the use of a non-linear control law. Sliding mode and adaptive sliding mode control laws are

derived for controlling the throttle plate dynamics. The adaptive control law provides an

on-line estimate of the friction, which can identify a throttle body with excessive friction.

Besides the control of the throttle position, the system must be integrated into the higher-

level goals of a powertrain controller. Various operational modes and the conditions to

2

transition between modes are identified. Software needed to implement both the logic of

choosing an appropriate controller and the algorithms of each controller is mapped into a

structured software architecture. Models are developed to simulate the closed-loop behavior

of the controller software and the code for the target embedded processor is written to

match the structure. Experimental results are presented, which validate various system

requirements.

Professor J. Karl Hedrick
Dissertation Committee Chair

iii

To Kristina

iv

Contents

List of Figures vi

List of Tables ix

I First Part 1

1 Introduction 2
1.1 Background . 3
1.2 Motivation . 3
1.3 Overview . 5

2 Hardware Description 7
2.1 Introduction . 8
2.2 Throttle Hardware . 8
2.3 Design of Power Electronics . 12

2.3.1 Introduction . 12
2.3.2 Switching Power Supplies . 13
2.3.3 Power to Inductive Loads . 15
2.3.4 Double Fly-back Diode Designs . 18

3 Mathematical Model 20
3.1 Introduction . 21
3.2 State Equations of the Driver . 21
3.3 Differential Equations of the Actuator . 23
3.4 Differential Equations of the Plant . 24
3.5 Sensor Models . 26
3.6 System Identification . 27

3.6.1 Introduction . 27
3.6.2 Determination of Plant Parameters 27
3.6.3 Noise Characteristics . 30
3.6.4 System Identification Results . 30

v

4 Control of Throttle Plate Dynamics 32
4.1 Introduction . 33
4.2 Sliding Surface Control . 33
4.3 Adaptive Sliding-Mode Control . 35

5 System Requirements & Operational Description 38
5.1 Dynamic Response Requirements . 39
5.2 Operational Description . 41

6 Embedded Software Design 45
6.1 Introduction . 46
6.2 Background . 47
6.3 Model-Based Design . 48

6.3.1 Motivation . 48
6.3.2 Embedded Software Modeling . 49

6.4 Electronic Throttle Control Software Design 52
6.4.1 Modeling . 52
6.4.2 Controller Design . 53

6.5 Conclusions . 59

7 Simulink/Stateflow Models 62
7.1 Modeling in Simulink/Stateflow . 63
7.2 Complete System Model . 63
7.3 Plant Model . 63
7.4 Sensor Models . 66
7.5 Controller Model . 66

7.5.1 Manager Task Model . 73
7.5.2 Monitor Task Model . 73
7.5.3 Servo-control Task Model . 81

7.6 Driver Model . 88
7.7 Actuator Model . 88

8 Simulations & Experimental Results 95
8.0.1 Simulation Results . 96
8.0.2 Conclusions . 101
8.0.3 Experimental Results . 102

Bibliography 105

A Hardware Reference 108
A.1 Wiring . 108

vi

List of Figures

1.1 Simplified diagram of the electronic throttle body 4

2.1 Schematic of the ETC hardware configuration 9
2.2 The MPC555-based micro-processor board and break-out connections are

shown on the left, and on the right, are the power supply and driver elec-
tronics boxes . 9

2.3 Picture of the BMW electronic throttle body (donated by BMW) 11
2.4 Schematic of the single fly-back diode design for relief of inductive currents 17
2.5 Schematic of the double fly-back diode design for relief of inductive currents

with a dual polarity power source . 19

5.1 Controller Modes . 44

6.1 ”V” Process for Design and Testing of Embedded Systems (Source: Man-
Feng Cheng, General Motors Corp.) . 49

6.2 Top-level view of the ETC system . 53
6.3 States of the ETC system . 55
6.4 Triggering of tasks inside the ETC controller 57
6.5 Task timing . 58
6.6 ETC static scheduler implemented in Stateflow 60

7.1 Top-level ETC model . 64
7.2 Model of the throttle plate dynamics . 65
7.3 Model of the sensors with noise . 67
7.4 Model of the acquistion delay . 68
7.5 Model of the sensor sampling . 69
7.6 Top-most model of the control software . 70
7.7 State-chart to trigger the execution of controller tasks 71
7.8 Model of the data-flow between tasks . 72
7.9 Model of the manager task . 74
7.10 Model of the manager task logic . 75
7.11 Model of the monitor task . 76
7.12 Model of the monitor task logic . 77

vii

7.13 In this sub-system, the current task counters of the manager and servo-control
task are compared against the last set of values. 78

7.14 An attempt to detect a failure of the throttle position sensors is made in this
model. 79

7.15 An attempt to detect a bad failure of the motor is made in this model. . . . 80
7.16 The top-level of the servo-control task model 81
7.17 Filter for the TPS signal . 82
7.18 The two TPS signals are averaged to obtain a better estimate of the throttle

position. 83
7.19 This model is used to select one TPS if the monitor has indicated that one

has failed . 84
7.20 This is a resetable filter for the pedal position. 85
7.21 This model of the plant is embedded in the filter for the pedal position. . . 86
7.22 This simplified version of the real controller is inside of the pedal position

filter. 87
7.23 This is a model of the sliding mode controller. 89
7.24 This is the same control as the sliding mode controller, but the commanded

position is limited for the limp-home mode. 90
7.25 Model of Drivers & PWM . 91
7.26 Model of the current regulating PWM . 92
7.27 Model of a simple PWM . 93
7.28 Model of the power electronics and the motor electrical dynamics 94

8.1 Simulation of closed-loop system with the adaption law disabled; (Desired
throttle angle is sine wave, which starts above the actual angle) 97

8.2 Simulation of the closed-loop system with the adaption law enabled; (The
desired throttle angle contains small amplitude impressed sine waves at the
peaks and troughs of the slow reference sine wave) 97

8.3 Simulation of the adaption of K̂f

J , where the actual plant parameter is given
by Kf

J = 62.8. 98
8.4 Simulation of the closed-loop system with a smaller value of Kf

J 99

8.5 Simulation of the adaption of K̂f

J , where the actual plant parameter is given
by Kf

J = 31.4. 99

8.6 Simulation of the adaption of K̂f

J , where the actual plant parameter is given
by Kf

J = 120. 100

8.7 Simulation of the adaption of K̂f

J , where the actual plant parameter is given
by Kf

J = 90. 100
8.8 Experimental results of the sliding-mode controller 103
8.9 Timing data taken with WindRiver’s WindView tool, which shows the exe-

cution of tasks in the Giotto program. 104

A.1 Pin-out of the BMW throttle electrical connector 109
A.2 Pin-outs of the DB9 connector for the TPS signals 109

viii

A.3 Pin-outs of the DB9 connector between the driver electronics and the micro-
processor . 109

ix

List of Tables

3.1 Directly Measured Parameters . 28
3.2 Parameters fit to model of throttle dynamics using experimental data . . . 30
3.3 Variance of the average TPS and pedal signals 31

A.1 This table provides a mapping between the various signals from the throttle
driver electronics and pin numbers and wire colors. 108

x

Acknowledgements

This work was conducted under sponsorship of DARPA/ITO (Contract #F33615-00-C-

1698, SmartVehicles: An Open Platform for the Design, Testing, and Implementation of

Automotive Embedded Systems)

1

Part I

First Part

2

Chapter 1

Introduction

3

1.1 Background

The electronic throttle control (ETC) system is a drive-by-wire system in which

the direct linkages between the accelerator and the throttle or the steering wheel and the

steering gear are replaced with pairs of sensors and actuators. ETC systems have existed

for more than a decade but have only entered mass production in the past few years. The

systems are entering the passenger car market in high-end vehicles, in which manufacturers

want to enhance the driver’s experience by dynamically adjusting pedal to throttle position

transfer function in response to changes in the temperature, altitude, or vehicle speed. [10]

Electronic throttle control systems are usually packaged as one assembly with a

motor, springs, and throttle position sensors all fit into the throttle body. Figure 1.1 shows

a simplified diagram of the internals of an electronic throttle body. In the center are the

throttle bore and the plate. As a safety mechanism, the spring provides a torque to close

the throttle when the motor is off. The equilibrium position of the spring in some electronic

throttle bodies is set to a small positive angle and the throttle is used to control idle speed.

The motor on the left end of the throttle shaft actuates the throttle and the potentiometer

on the right end of the shaft is the throttle position sensor.

1.2 Motivation

The electronic throttle control (ETC) system presents two interesting problems in

one application. From the automatic control perspective, the throttle plate has non-linear

dynamics, so control of the throttle plate position is most appropriately addressed by the

use of non-linear control theory. Of equal concern is the development of software, which

4

Figure 1.1: Simplified diagram of the electronic throttle body

implements the stabilizing control law. The controller software is an embedded application

on a powertrain microprocessor and it must meet high reliability and safety requirements. In

this thesis, a complete ETC system will be designed that considers the hardware, software,

and control theory design problems.

The alternative to the drive-by-wire electronic throttle system is the standard pull-

cable throttle with return spring. This is still the predominant solution in use in passenger

cars. There are a number of ways in which the electronic throttle system performs better

than the mechanical linkage. The only disadvantage of the drive-by-wire solution may be

the cost. A natural concern about removing the mechanical linkage between the accelerator

pedal and the throttle mechanism is that the non-mechanical system might be inherently less

safe and less reliable. The drive-by-wire system can, in fact, be more reliable particularly

5

when considering problems with sticky and dirty throttle bodies. The electronic system

can adapt to the friction in the system in order to maintain the accelerator pedal tracking

performance. Since the system makes an estimate of the friction, it can also diagnose

dirty, sticky, or otherwise worn out hardware. Hardware and software redundancy is also

used to maintain a very high level of reliability. Integration of various engine and vehicle

control systems can be accomplished with a single ETC system and can offset the additional

cost of the ETC hardware. Cruise control, idle control, engine over-rev. protection and

traction control features might all need to modify the throttle position. With the ETC

system, the switching or blending of control algorithms occurs in software and there is

no need for separate actuation components for each feature. There are also advanced

features that can be accomplish only with the ETC system. If multiple throttles are used,

sophisticated engine power management can shut down individual cylinders and, in doing

so, increase the efficiency of the power cycles in the other engine cylinders. The replacement

of the connection between the driver’s foot and the throttle plate with software allows the

designer to adjust the pedal-to-plate transfer function. For instance, initial pedal travel

can correspond to smaller throttle plate motion compared with pedal travel closer to the

wide-open-throttle (WOT) position. This transfer function can also be adjusted for vehicle

speed or altitude to make the engine feel more responsive to the driver.

1.3 Overview

This thesis is organized roughly in the order of design activities for the ETC

system. First, the hardware is described in detail. Important details of the design, which

6

are relevant to the ETC system, are discussed. An in-depth look is given to the power

electronics for driving the throttle actuation motor. Given a particular electronic throttle

body, a mathematical model of this plant is developed and then the system is fit to data

taken from the throttle. Position control of the throttle plate dynamics is considered given

the model of those dynamics. A sliding mode and adaptive sliding mode controller are

developed theoretically and then tested on the mathematical model of the throttle. The

system requirements and operational description prescribe the throttle behavior given inputs

such as the accelerator pedal position, vehicle speed, and engine speed. The next design

consideration is the software architecture, in which the algorithms and logic that implement

the system requirements are fit. Some abstractions of the software are developed and these

abstractions are used to model the software. A detailed model of the plant, the controller

and interface between the two in the form of driver, actuator and sensor models are created

in MathWorks Simulink r©/Stateflow r© 1. Simulations of the models verify that the system

requirements are met before the controller software is tested with the physical plant. The

software implementation of the controller is tested on the hardware and the experimental

results are compared with the simulation results.

1Simulink and Stateflow are registered trademarks of The MathWorks, Inc., Natick, MA

7

Chapter 2

Hardware Description

8

2.1 Introduction

The hardware for the ETC system is a combination of purchased and built com-

ponents. A schematic of the complete system is shown in figure 2.1. A Motorola MPC555

micro-processor based board (ES200.2 sold by ETAS GmbH & Co.KG.) implements the

embedded control. A slightly modified PC power-supply provides 5V and 12V lines to the

micro-processor board and the driver electronics. The micro-processor board runs exclu-

sively on 12V and can tolerate some variation in supply voltage. The driver electronics for

the pedal position sensor use a 12V line to create a regulated 5V signal for the sensor’s po-

tentiometer. The other driver electronics, which drive the motor and the throttle position

sensors in the electronic throttle body, use both 5V and 12V supplies. The connections

between the micro-processor board and the driver electronics carry digital signals to the

H-bridge IC and the analog signals from the pedal position sensor and the throttle position

sensors.

2.2 Throttle Hardware

The throttle selected for the system is a BMW electronic throttle. See the picture

of the throttle in figure 2.3. There are several important features that make it well suited

for the electronic throttle application. It has a DC servo motor that drives the throttle

plate through a set of reduction gears. There are only two types of motors appropriate

to this type of application, a stepper motor and a servo motor. In terms of efficiency, the

stepper motor is an optimal solution when one position must be held but it is not very

efficient for quick movements. The ability to make quick precise movements of the throttle

9

Driver Electronics

Engine Airflow

MPC555
PWM

TPS

Power Supply

Pedal
Position

Throttle

Driver Electronics

Pedal Position

120 VAC

Driver Electronics

Engine Airflow

MPC555
PWM

TPS

Power Supply

Pedal
Position

Throttle

Driver Electronics

Pedal Position

120 VAC

Figure 2.1: Schematic of the ETC hardware configuration

Figure 2.2: The MPC555-based micro-processor board and break-out connections are shown
on the left, and on the right, are the power supply and driver electronics boxes

10

plate is more important than the potential efficiency gain of a stepper motor for holding

one position for long periods of time. Also, the stepper motor is built to hold a finite

number of positions and this affords very little flexibility in the design of the controller.

Another important feature is the gear reduction between the servo motor and the throttle

plate. The gear reduction cuts down the static friction from the throttle plate and allow a

smaller motor to be used. Compared to a system without the gear set, the throttle can be

controlled more precisely and requires less power. The servo motor provides the actuation

and the throttle position sensor provide the position feedback necessary for closed-loop

control. Because the throttle position control is a safety critical function, there must be

hardware redundancy to make it likely that a hardware fault is detected. Since the throttle

position sensor is the sole observer of the states of the throttle, a redundant sensor greatly

increases the likelihood that a hardware failure will be identified and that the system will be

correctly brought to a safe shutdown or limited ability mode. The throttle position sensors

are two linear potentiometers that operate on the same power supply. A common 5V signal

is provided to the throttle position sensors by a regulated by an IC in the power electronics

box. In a clever design, the TPS potentiometers have been connected so that the outputs

are complementary. The sum of the two signals equals the supply voltage and then a failure

of the regulator due to a chip failure or an under-voltage condition of the battery can be

distinguished from a single potentiometer failure. The last notable feature of the throttle

is a positive equilibrium position of the return spring. If the servo motor is not energized,

the throttle plate will remain open by a few degrees. This design ensures that the engine

continues to run at a high idle speed in the case of a failure in the servo actuation system.

11

Maintaining this fast idle is both a safety and convenience concern. If the engine stalls, then

there is no power to accessories such as power steering and power brakes. If the electronic

throttle shuts down when the driver is on the road, a fast idle will help the driver get the

vehicle to a safe location. And of course, it is important that the throttle defaults to a

nearly closed condition so that the power of the engine is low and the vehicle does not run

out of control.

Figure 2.3: Picture of the BMW electronic throttle body (donated by BMW)

The BMW electronic throttle body was donated to the MoBIES project and it

came with a connector but no cabling of power electronics. I decided that the cabling and

power electronics should be modular and well-shielded. There are six pins in the electronic

throttle body connector: two for the motor and four for the TPS potentiometers. The motor

cables and the TPS potentiometer wires are bundled separately so as to reduce the noise

that the current going to the motor would cause in the TPS readings. Both cables have

shielding and inside the TPS cable, the supply wires are independently shielded from the

12

signal wires. The motor and TPS cables are shielded large gauge three-conductor cable and

small gauge four-conductor cable, respectively. In between the MPC555 and the throttle is a

power electronics box. The cables from the throttle have connectors in between the throttle

and the power electronics box. (This makes it much easier to quickly test the throttle,

switch in a different throttle or a different power electronics box.) For the same reason,

the cable that connects the power electronics with the MPC555 also has a connector. This

nine-conductor shielded cable carries only signals and no power between the processor and

the power electronics. The heart of the power electronics is the H-bridge, which uses digital

inputs to control large currents (over 3A) to the motor. Four of the wires from the MPC555

are TTL signals, which can control the H-bridge. In addition, the signals going back to the

H-bridge consist of a status signal from the H-bridge, two throttle position sensor signals,

the motor current signal and a ground line.

2.3 Design of Power Electronics

2.3.1 Introduction

The design of the power electronics that drive the servo motor is a bit of an art.

The purpose of the power electronics is to provide a digital logic interface to the actuation

of the servo motor. In order to control the position of the throttle, it is necessary to control

the torque out of the servo, which is simply proportional to the direct current in the servo

windings. There are two methods types of power supplies that can be used to adjust the

current going through the windings: linear and switching power supplies. The linear design

is quite simple; a variable resistance is placed in series with the motor, with which the

13

current through the motor is given by Ohm’s law. Unfortunately, at about half of the

motor’s rated current, only half of the power is going into the motor and the other half

is going into the variable resistor. The heat dissipated in the resistance is wasteful and

cooling the resistor can be a challenge. Of course, there is essentially no loss when the

variable resistor is at a very high or very low resistance with respect to the resistance of the

motor windings. This leads to the idea of the switching power supply. The idea is that by

only using the power supply at the low or high resistance (on or off) operating points and

switching between the two very rapidly, the load will only receive a fraction of the power

and the losses will be much less than using a linear supply.

2.3.2 Switching Power Supplies

If only one polarity is needed, the switching power supply can be represented by

a voltage source across a switch in series with the load. If the load is a resistance, then

the instantaneous power to the resistance when the switch is closed is the product of the

current and the supply voltage. The average power dissipated by the load is a portion of

that power, where that portion is the fraction of the time that the switch is closed.

There are several of devices that will open and close the circuit using an input

signal. A mechanical relay, which uses a small control current to open and close large

contacts, can be used. However, the mechanical motion of the relay is too slow for a

switching power supply and sparking can pit the contacts or weld them together. Transistors

are the correct solution for a switching power supply because they can be turned on and off

much faster than a relay and do not have mechanical wear problems. There are two common

classes of transistors: the bipolar junction transistor (BJT) and the field effect transistor

14

(FET). The former is a current controlled device and the latter is a voltage controlled device.

Although they both could be used for the switching power supply, this distinction, as well

as the fact that BJTs are subject to thermal-runaway makes the FET a better choice. The

BJT in its linear operating range uses a small current to meter a large current like a set

of reduction gears. The ratio of the control current to the large current is generally in the

range or 1:10 to 1:100. (Darlington transistors are simply two BJTs cascaded to achieve a

higher ratio.) For use in the switching power supply, the transistor will be driven into its

saturation region by supplying more control current than is needed to reach the maximum

load current. For large load currents there will be a substantial control current, which will

create heat dissipation problems and there will have to be multiple BJTs to reduce the

control current level within that of transistor-transistor logic (TTL). Heating up a BJT is a

problem for another reason; the resistance to the large current flow drops as the BJT heats

up and allows more current flow. This positive feedback is know as thermal-runaway and it

can destroy the transistor in an instant. FETs do not suffer from this problem. For FETs, a

voltage applied to the gate terminal controls a large current. Only a tiny current (< 10−9A)

into the gate is possible and for all practical purposes the gate terminal can be considered

an infinite resistance. This means that no power is required to hold the FET in the open

or closed state. Power is only consumed in changing the state of the FET from on to off.

The on and off states of the FET are characterized by very high and very low resistance, on

the order of over 1MΩ and less than 0.1Ω respectively. During transitions there is a brief

period of time that the resistance of the FET is of a comparable magnitude and during this

time there is power dissipation. One other important feature that is commonly built into

15

FETs is a diode that allows for reverse current flow through the FET. The low on-state

resistance, the fast switching time and the lack of power needed to hold the FET open or

closed makes it an excellent choice for the switching power supply.

2.3.3 Power to Inductive Loads

In the previous discussion of the appropriate switching device, the load was con-

sidered to be a resistance. In contrast the servo motor is a load characterized by a large

inductance in series with a small resistance. (The inductance of the servo motor in the

BMW electronic throttle body is 1.7mH and the resistance is 3Ω.) When the switch is

closed in the circuit with the motor as the load, there is no instantaneous current through

the motor. The inductance guarantees that the current through the motor is a continuous

function of time. This means that ideally it is not possible to open the switch again when

there is current through the motor. If the switch is a set of contacts, then at the instant

after the contacts open the induction of the motor applies whatever voltage is necessary to

maintain its current flow. In the case of physical contacts, thousands of volts are applied,

which ionizes the air and the current arcs across the gap. The large voltage quickly elimi-

nates the current flow, so the spark only lasts a brief moment. The situation is not much

different in the case of the FET except that it cannot spark, but the voltage applied from

the drain to the source can easily exceed the break-down voltage and destroy the transistor.

Clearly, it is important to provide a safe outlet where the current flow can decay in a con-

tinuous, controlled manner. A diode that connects the motor terminals and allows current

to circulate out of the motor and back into the positive terminal solves this problem. This

diode is referred to as a fly-back diode, because it allows the current to fly-back from the

16

negative to the positive terminal. See the schematic of the circuit in figure 2.4. Because it

allows current flow only from the negative to the positive motor terminals, when the switch

is closed the power supply cannot short circuit across the diode. There are three design

considerations for the diode. First, similar to the FET, there is a break-down voltage, which

the power supply to the motor must not exceed or the diode will be destroyed. Also, there

are two kinds of diodes from which to choose. The standard diode begins to allows current

flow in the forward direction with a forward voltage of about 0.6 volts and the Schottky

diode begins to allow current flow at only 0.3 volts. Since the power dissipated by the

device is the product of the current flow and the voltage across the device, the Schottky

diode will draw only have the power of the standard diode. If the current does not need to

be stopped when the switch is open, the reduced forward voltage reduces the power wasted

by the diode. Finally, the power rating of the diode must be matched to the application.

The single FET with a fly-back Schottky diode is a good solution for the switching

power supply, but it is limited to one polarity across the motor terminals. If the servo motor

must be capable of applying torque in both directions, then an H-bridge design is needed.

The H-bridge connects each motor terminal to both the positive and ground points of the

voltage supply with a FET in each connection. The four FETs operate in two pairs, each of

which connects one motor terminal to the positive supply voltage and one motor terminal

to ground. Switching on one or the other of these pairs causes current to flow either one

way or the other through the motor. When both pairs are off, no current can flow, except

backwards through one or the other pair of FETs. This path is through the built-in diodes

and is against the supply voltage. Again, the inductance of the motor must be considered

17

Motor

+1
2

V
D

C Rm

Lm

Single Polarity
Switching

Power Supply

Figure 2.4: Schematic of the single fly-back diode design for relief of inductive currents

18

and a path for the current flow must be maintained at all times. Although the motor

current can flow backwards through a pair of FETs after the FETs have been turned off,

this current flow is against the supply voltage.

The switching power supply is to implement pulse-width modulation (PWM) and

ideally, the power delivered would be linearly proportional to the duty-cycle and not be

affected by the frequency of the PWM. That is to say, that a 50% duty cycle PWM would

deliver only half the power of a 100% duty cycle PWM and the power at any duty cycle

would be constant throughout all frequencies. In order for this to happen, once the power

is delivered to the motor during the ”on” part of one PWM wave, it should not return to

the power supply during the ”off” part. This is what will happen in the simple H-bridge

configuration and there are two ways to fix the circuit so that this does not happen. Both

are extensions of the fly-back diode design discussed in the context of the single FET, which

use two fly-back diodes.

2.3.4 Double Fly-back Diode Designs

The first design requires that all four gates of the FET can be controlled indepen-

dently. Two fly-back diodes are used, but instead of connecting the diodes across the motor

terminals, one end of each diode connects to one motor terminal and the other ends connect

to the power supply ground. The diodes are oriented to allow current flow from ground

back into one or the other motor terminals. When one pair of FETs transitions from on

to off, the FET that connects to ground can be left on and then current can continue to

circulate through one of the diodes and the FET that is still on. If independent control of

each gate is not possible, then a more sophisticated design is needed.

19

The H-bridge power electronics, which were designed for the BMW throttle, uses

logic to insert or remove the fly-back diodes at the correct moment. (It is important to note

that this design is specific to the load and should not be used with any generic load without

recalculating a few key parameters.) The design has two fly-back diodes that together allow

current to flow in either direction from the motor terminals. To prevent a short circuit when

the supply voltage is applied to the motor terminals, the potentially short-circuiting diode

is removed from the circuit by a FET acting as a switch. The schematic of this circuit is

shown in figure 2.5. The resistance, Rs, and inductance, Ls, protect the circuit against a

short during any brief moments that the H-bridge is on and the diodes have not yet been

removed from the circuit by the FETs. The resistance, Rp, and the capacitance, Cp, provide

a path for current from the motor for brief periods of time if the H-bridge has just turned

off but the FETs have not inserted the diodes back into the circuit.

Motor

+/
-1

2
V

D
C

Diode Driver
1

Diode Driver
2

Rs

Rp

Cp

Rm

Lm

H-Bridge
Power Supply

Ls

Figure 2.5: Schematic of the double fly-back diode design for relief of inductive currents
with a dual polarity power source

20

Chapter 3

Mathematical Model

21

3.1 Introduction

The need to control the dynamics of the throttle plate motivates the derivation of

the differential equations for all the hardware components and the experimental identifica-

tion of hardware parameters. The hardware will be conceptually divided into four sections:

the driver, the actuator, the plant and the sensors. The driver is the interface through which

the software can affect the plant. In the ETC system, two pulse-width modulation PWM

units drive the power electronics. The actuator section models the combined dynamics of

the power electronics and the electrical characteristics of the motor. The actuator applies

a torque on the plant, which is the mechanical system including the throttle plate, the

reduction gear set and the motor. The throttle position sensors and the analog-to-digital

converters are lumped together in the sensors section. The behavior of each part will be

described in the following sections.

3.2 State Equations of the Driver

There are two models different models of the PWM, which are used in the ETC

system. One is a static duty-cycle PWM, in which the duty-cycle input is sampled once

per PWM period. The following defines the state-machine that describes this PWM. p(t)

is the PWM output, d is the input duty-cycle, dL is the latched duty-cycle, and T is the

PWM period.

22

p(t) ∈ {0, 1}

d(t), dL ∈ [0, 1]

T ∈ �+

p(0) = 0

if (t = nT |n = 0, 1, 2, . . .) then dL(t) = d, and p(t) = 1

if (p = 1 and t mod T > dL) then p = 0

An alternative PWM design does not have a static duty-cycle during one period.

Instead p(t) = 1 until an input value falls to zero or below.

p(t) ∈ {0, 1}

e(t) ∈ �

T ∈ �+

p(0) = 0

if (t = nT |n = 0, 1, 2, . . .) then p(t) = 1

if (p = 1 and e < 0) then p = 0

23

3.3 Differential Equations of the Actuator

The PWM drives the H-bridge of the power electronics. Two PWM units are used,

where one is for forward polarity output and the other is for reverse polarity output. For

the purposes of modeling, only one PWM is used to drive the H-bridge and the sign of the

PWM determines the output polarity. In order to write down the circuit equations, the

following states and parameters are defined.

i(t) := Armature Current (A)

p(t) := PWM

T (t) := Torque on Throttle N-m

Vb(t) := Back EMF (V)

Ra := Armature Resistance (Ω)

L := Armature Inductance (H)

RBat := Internal Resistance of the Source (Ω)

VBat := No-Load Voltage (V)

KT := Motor Torque Constant
(
N −m

A

)

The Kirchoff loop equation for the armature circuit is given by equation 3.1

24

di

dt
= −Ra

i
− Vb

L
+

VBat

L
p(t)− RBat

L
i,where p(t) ∈ {−1, 0, 1} (3.1)

Vb(t) = KT ω (3.2)

T (t) = KT i (3.3)

Equation 3.2 gives the back EMF, which is proportional to the motor speed, and

equation 3.3 gives the torque applied to the throttle. This set of equations couples the

actuator and the plant.

3.4 Differential Equations of the Plant

The throttle plate, the reduction gears and the motor rotor are lumped together

as a single inertia, which is acted upon by the torque defined in equation 3.3. The states

and parameters of the throttle plate dynamics are defined.

θ(t) := Throttle Angle (rads)

ω(t) := Throttle Angular Velocity
(
rads
s

)

25

J := Lumped Inertia of throttle plate, (Kg-m2)

reduction gears and motor rotor

Ks := Spring Constant
(
N-m
rad

)

Kd := Viscous Friction Constant
(
N-m-s
rad

)

Kf := Coulomb Friction Constant (N-m)

θeq := Zero Displacement of Throttle Return Spring wrt θ = 0 (rads)

Cs := Torque Constant (spring torque at (θ = 0) (N-m)

The parameter, Cs is related to Ks and θeq by the following,

Ts = −Ks(θ − θeq) = −Ksθ − Cs (3.4)

or solving for Cs,

Cs = −Ksθeq (3.5)

The moments due to viscous and Coulomb friction are,

Td = −Kdω (3.6)

Tf = −Kf sgn(ω) (3.7)

The throttle plate dynamics can now be expressed by summing the moments about

the throttle plate shaft. There are four moments acting upon the shaft: the moment from

the return spring given by 3.4, the viscous and Coulomb friction moments given by 3.6 and

3.7, respectively, and the moment applied by the electric motor given by 3.3.

26

Jω̇(t) = −Ks(θ(t)− θeq)−Kdω(t)−Kf sgn(ω) + T (t) (3.8)

So the complete system is given by,


 θ̇(t)

ω̇(t)


 =


 0 1

−Ks −Kd





θ(t)

ω(t)


+


 0

Cs −Kf sgn(ω(t))


+


 0

T (t)


 (3.9)

3.5 Sensor Models

Two throttle position sensors and a motor current sensor are the three analog

sensors in the ETC system. The throttle position sensors are potentiometers that, given a

constant input voltage, provide an output voltage that varies linearly between about 0.5V

and 4.5V with the throttle angle, θ(t). Also, the sum of the output voltage of the two

sensors is equal to the input voltage. The motor current sensor also provides an output

voltage that varies linearly with the motor current.

TPS1(t) := Throttle Position Sensor 1 Output (V)

TPS2(t) := Throttle Position Sensor 2 Output (V)

n1(t) := Noise on TPS1(t) (V)

n2(t) := Noise on TPS2(t) (V)

27

Vref := Constant Voltage Source (V)

α := Fraction of Vref for TPS1(t) at θ = 0

β := Fraction of Vref for TPS2(t) at θ =
π

2

TPS1(t) = αVref +
(
βVref − αVref

π
2

)
θ(t) + n1(t) (3.10)

TPS2(t) = Vref − TPS1(t) + n1(t) + n2(t) (3.11)

3.6 System Identification

3.6.1 Introduction

The constant terms in the equations for the actuator, plant, and sensors must

be identified to realize a controller for the system. Some of these terms can be measured

directly, some can be determined indirectly from dynamic performance and some cannot be

measured at all. The sensor noise terms n1 and n2 must also be characterized for simulation

and design of appropriate filters.

3.6.2 Determination of Plant Parameters

The easiest parameters to measure are those that do not involve the dynamic

behavior of the system. The resistance and inductance of the electric motor can be measured

directly as well as the source voltage and internal resistance of the source.

28

Parameter Measured Value
Ra 3.5 Ω
L 1.7 H

VBat 12.0 V
RBat 0.5 Ω

Table 3.1: Directly Measured Parameters

Measuring other parameters such as Coulomb and viscous friction requires the

throttle to be in motion, and even then these values cannot be measured directly. The

signals that are available from the hardware are p(t) and θ(t), from which ω(t), ω̇(t) and

E[p(t)] can be easily derived. The dynamics of the power electronics are simplified by

replacing the input, p(t), by a mean value approximation, and assuming that the inductance

of the motor, L, is zero.

u(t) := E[p(t)] ∈ [−1, 1] (3.12)

0 = −Raī− Vb(t) + VBatu(t)− īRBat (3.13)

ī =
(

1
Ra +RBat

)
[u(t)VBat − Vb(t)] (3.14)

29

The throttle plate dynamics can be rewritten in terms of ī(t)

ω̇(t) = −Ks

J
θ(t)− Cs

J
− Kd

J
ω(t)− Kf

J
sgn(ω(t)) +

KT

J
ī(t)

Substituting equation 3.2 in for Vb and defining
K′

d
J

K ′
d

J
:=

Kd

J
+

K2
t

J(Ra +RBat)

ω̇(t) = −Ks

J
θ(t)− Cs

J
− K ′

d

J
ω(t)

− Kf

J
sgn(ω(t)) +

KT

J

VBat

Ra +RBat
u(t)

(3.15)

Given that θ(t), ω(t), ˙ω(t) and u(t) are available signals, then sets of these values

at different times, t, can be used to solve for the best values of Ks
J ,

Cs
J ,

K′
d

J ,
Kf

J and KT
J

in a least squares sense. Solving for Kd
J from K′

d
J requires knowledge of either KT or J .

Obtaining KT would require either measuring the motor torque to current relationship

or the motor angular velocity to induced armature voltage relationship. J is more easily

estimated by knowing the material densities, approximate geometries of the throttle plate,

motor and gears and the gear ratio. The only complication is the presence of the nonlinear

term, sgn(ω(t)). To eliminate this problem, the data is simply divided into data points

where ω(t) is positive and data points where ω(t) is negative. Then the combined positive

and negative velocity data sets are fit to the differential equation. The difference in the

parameter, Cs
J between the positive velocity data set and the negative velocity data set

provides the estimate of Kf

J .

30

3.6.3 Noise Characteristics

The noise, n1(t) and n2(t), on the throttle position sensor signals is assumed to

be a white Gaussian stationary random process. It can then be characterized by its mean

value and variance.

m1 := E[n1(t)] (3.16)

m2 := E[n2(t)] (3.17)

m1 and m2 are assumed to equal 0

E
[
TPS1(t) + TPS2(t)

2

]
= θ(t) (3.18)

σTPS := E
[(

θ(t)− TPS1(t) + TPS2(t)
2

)2]
(3.19)

A zero-phase filter is applied to the complete set of throttle position sensor readings

in order to obtain a good approximation of θ(t). Then the data and the filtered data are

used to estimate the variance, σTPS , of the noise signal.

3.6.4 System Identification Results

Parameter Measured Value
Kd
J 3.00e1 s−1

Ks
J 1.35e1 s−2

Kf

J 6.29e1 rad
s2

Kt
J 2.50e1 rad

A-s2
Cs
J 2.01e2 rad

s2

Table 3.2: Parameters fit to model of throttle dynamics using experimental data

31

Signal Variance Measured Value
σTPS 9.28e-6 rad2

σPedal 1.63e-5 rad2

Table 3.3: Variance of the average TPS and pedal signals

32

Chapter 4

Control of Throttle Plate

Dynamics

33

4.1 Introduction

The presence of non-linear friction in the throttle dynamics motivates the use of

a sliding mode controller. This non-linear controller makes full use of the plant model to

guarantee robust control even in the presence of plant uncertainty and external disturbances.

An adaptive sliding mode controller is considered as a method for tuning the controller to

the actual Coulomb friction. This can essentially minimize the controller gain with respect

to the Coulomb friction as well as provide an estimate of the friction for fault diagnosis.

4.2 Sliding Surface Control

To begin the derivation of the sliding mode controller, a Lyapunov function V

is defined in equation 4.1. V is positive definite and if V̇ is negative definite, then s will

globally, asymptotically approach zero. s is selected so that the surface in the state-space

defined by s = 0 corresponds to desired plant dynamics (i.e. the plant states approach the

desired values.) Equation 4.3 defines a sliding surface, s, such that for positive values of λ,

the throttle angle, θ(t), and angular velocity, ω(t), will exponentially approach the desired

throttle angle, θd(t), and the desired angular velocity, ωd(t)

V :=
1
2
s2 (4.1)

V̇ = sṡ (4.2)

s := ω(t)− ωd(t) + λ(θ(t)− θd(t)) (4.3)

ṡ = ω̇(t)− ω̇d(t) + λ(ω(t)− θ̇d(t)) (4.4)

34

Replacing ω̇(t) with the plant dynamics given by 3.15, and defining Ka,

Ka :=
KtVBat

Ra +RBat
(4.5)

ṡ = −Ks

J
θ(t)− Cs

J
− K ′

d

J
ω(t)− Kf

J
sgn(ω(t))

+
Ka

J
u(t)− ω̇d(t) + λ(ω(t)− ωd(t))

(4.6)

An important property of the sliding surface, s, is that its derivative contain the

control input so that the control input can force V̇ to be negative definite. The presence of

u(t) in ṡ validates the selected surface, given by 4.3.

Consider the definition 4.7 for ṡ, which is negative definite. It is possible to define

ṡ in this way because, given the plant parameters and states, u(t) can cancel all the plant

terms in ṡ and insert any other expression.

ṡ := −ηsgn(s) (4.7)

sṡ = s(−ηsgn(s)) < 0,∀s �= 0 (4.8)

In the expression for V̇ , only ṡ depends on the control input, so only ṡ can be used

to force V̇ to be negative definite. The terms in ṡ due to plant dynamics can be canceled

so that ṡ = 0 if u(t) is defined as follows:

u(t) =
(
Ka

J

)−1[Ks

J
θ(t) +

Cs

J
+

K ′
d

J
ω(t)

+
Kf

J
sgn(ω(t)) + ω̇d − λ(ω(t)− ωd(t))

] (4.9)

35

By adding an additional term, −η sgn(s), a control law is formed which makes sṡ negative

definite, and then s must be globally asymptotically stable about 0.

u(t) =
(
Ka

J

)−1[Ks

J
θ(t) +

Cs

J
+

K ′
d

J
ω(t)

+
Kf

J
sgn(ω(t)) + ω̇d − λ(ω(t)− ωd(t))− η sgn(s)

] (4.10)

4.3 Adaptive Sliding-Mode Control

Online parameter estimation of the Coulomb friction, Kf , in the plant would be

advantageous and seems should be possible because the parameter varies very slowly with

time. With an estimate of this value, the control input could be reduced because it would not

have to handle the worst case friction. If the estimate shows that the friction is abnormally

high (compared with some design specification for the throttle body), a diagnostic message

could be displayed.

The Lyapunov function defined in equation 4.1 is altered to include a parameter

estimation error term,

K̃f

J
=

K̂f

J
− Kf

J
(4.11)

V =
1
2
s2 +

1
2γ

(
K̃f

J

)2

(4.12)

V̇ = sṡ+
1
γ

K̃f

J

˙̃Kf

J
(4.13)

Because K̂f

J in equation 4.13 is not equal to the actual Coulomb friction in the

plant, the control, u(t), cannot exactly compensate for it. u(t) becomes,

36

u(t) =
(
Ka

J

)−1[Ks

J
θ(t) +

Cs

J
+

K ′
d

J
ω(t)

+
K̂f

J
sgn(ω(t)) + ω̇d − λ(ω(t)− ωd(t))− η sgn(s)

] (4.14)

Using the sliding-mode control law derived before, V̇ becomes,

V̇ = −ηssgn(s) +
K̃f

J
sgn(ω)s+

1
γ

K̃f

J

˙̃Kf

J
(4.15)

The first term, −ηssgn(s), is already negative, so the adaption law for K̂f

J must be

chosen such that the remaining terms do not disturb the negative definite property of V̇ .

K̃f

J
sgn(ω)s+

1
γ

K̃f

J

˙̃Kf

J
≤ 0 (4.16)

K̇f

J
= 0 (4.17)

K̃f

J

(
sgn(ω)s+

1
γ

˙̂
Kf

J

)
≤ 0 (4.18)

1
J
sgn(ω)s+

1
γ

˙̂
Kf

J
= 0 (4.19)

˙̂
Kf

J
= −γsgn(ω)s (4.20)

The adaption law for K̃f

J given by equation 4.20 causes the terms with K̂f

J in V̇ to

cancel each other out of the equation exactly. The expression for V̇ becomes the same as it

was in the original formulation of the sliding mode controller by the addition of the adaption

law. However, there is a substantial difference between the Lyapunov functions. In the new

Lyapunov function there is no explicit guarantee on the convergence of K̂f to Kf . Initially

it would appear that once s = 0 then V̇ = 0 and so if K̃f

J �= 0, it will not get any better.

37

Persistency of excitation is the additional requirement for convergence of K̃f → 0. This

means that reference signals that do not sufficiently exercise the controller will not cause

parameter convergence. It will be shown the simulation results that the reference signal

must contain switches in the sign of the desired angular velocity for parameter convergence.

38

Chapter 5

System Requirements &

Operational Description

39

5.1 Dynamic Response Requirements

The purpose of the throttle is to meter air flow into the intake manifold. In the

most common mode of operation, the driver provides a desired throttle position with the

throttle pedal. Trying to emulate the behavior of the mechanical linkage with the electronic

throttle, places performance requirements on the dynamics of the pedal to throttle position

transfer function. It is not practical nor useful to match the driver’s requested throttle

position with as much accuracy as possible. The speed of response to a change in the

requested position and the accuracy with which the throttle is positioned only needs to be

on the same order as the speed of response of the engine to a change in throttle position and

sensitivity to the throttle position. Using this as a guide, the following system performance

requirements were developed.

Rise Time

Rise Time is defined as the time required for the throttle plate angle response to a

step change in pedal position to rise from 10% of the steady state value to 90% of

the steady state value. The rise time for step changes from closed to fully open is

100ms; and the rise time for step changes from WOT to closed is 60ms.

Settle Time

Settle Time is defined as the minimum time after which the throttle plate angle

remains within +5% of steady-state value. ETC shall guarantee that the settle

time is less than 40ms after the throttle plate angle reaches 90% of the steady-state

value.

40

Percent Overshoot

ETC throttle plate shall never hit the stops (or zero overshoot).

Steady State Tracking Error

Steady State Tracking Error is defined as the difference between the desired throttle

plate angle and final steady state angle. The ETC shall guarantee the Steady State

Tracking Error is within the +2

Throttle Plate Angle Resolution

The ETC system shall be able to control the throttle plate angle with a resolution

of 0.2 degrees for a range of 0 to 90 degrees.

41

5.2 Operational Description

Defined below are modes of operation for the ETC system. Each mode may have

different inputs and a different objective.

Human Driver
Input: Commanded throttle angle from accelerator

pedal sensor
Function: Track commanded throttle angle

Cruise Control
Input: Vehicle speed at the instant that the cruise set

button was pressed
Function: Maintain the set vehicle speed

Rev Limiting
Input: Engine speed
Function: Reduce the engine speed below a maximum

RPM

Traction Control
Input: Desired engine torque to regain traction
Function: Reduce the engine torque to the desired en-

gine torque

Startup
Function: Power-up hardware, initialize software and

enter human driver mode of operation when
all components are ready.

Shutdown

Function: Power-down hardware

42

Condition Definition
Cruise Condition Vehicle speed above 30 mph AND gear se-

lector in drive AND brake switch is inactive
AND Cruise switch ”On” AND Cruise coast
not pressed

Over-rev Condition Engine speed > maximum engine speed
Traction Ctrl. Condi-
tion

Engine torque > maximum allowable engine
torque

4. Transitions

Mode 1 −→ Mode 2 Condition
Startup Driving No sensor or actuator faults
Inactive Cruise Cruise condition
Cruise Inactive NOT cruise condition
Driving Limiting Over-rev condition OR traction

control condition
Limiting Driving NOT (Over-rev condition OR trac-

tion control condition)
Inactive Over-Rev Over-rev condition
Over-Rev Inactive NOT over-rev condition with hys-

teresis
Inactive Traction ctrl Traction control condition
Traction ctrl Inactive NOT traction control condition

with hysteresis
Driving Shutdown Ignition turned off
Limiting Shutdown Ignition turned off

5. Throttle Actuation Rules

43

Mode Rule
Startup Mode No actuation of throttle motor
Driving Mode Throttle motor voltage is calculated with the

human control law and the cruise control law,
if active, and the greater of the two values is
selected.

Limiting Mode Throttle motor voltage is calculated with the
rev limiting control law, if active, and with
the traction control law, also if active, and
the lesser of the two values is selected.

Shutdown Mode No actuation of throttle motor

The modes of operation and the possible transitions are shown in figure 5.1. The

label, ”XOR” indicates only one of the states at the same level can be active, whereas the

”AND” label indicates that all the states at the same level are active. When the vehicle

ignition switch is turned on, the ETC system enters the startup mode. The throttle actuator

should be off while the embedded processor boots. The startup software for ETC should

check that the actuators and sensors are not exhibiting any faults and then transition to

the driving state. In the driving state, both the human control state and the inactive cruise

control state are active. If the cruise control state is activated, then the throttle actuation

is calculated based on both the human control and the cruise control and the greater of the

two values is used. This method replicates the current human driver interface for cruise

control. In current production cruise control systems, the driver is able to increase the

throttle angle to pass, but if the driver is not pushing the throttle down as much as the

cruise control decides is needed, then the cruise control actuator takes over. If either or

both of the limiting mode (rev limiting and traction control) conditions are true, then the

limiting state is entered. To exit this state, both the rev limiting and traction control

44

conditions must be false. Because the objective of either the rev limiting control or the

traction control is the reduction of the throttle angle, if both the rev limiting control and

the traction control are active, the throttle actuation values are calculated based on both

control laws and the smaller value is selected. The shutdown mode must turn off the throttle

actuation and then halt the ETC software.

Start-up Shut-down

AND

Human Control

Inactive

Cruise

XOR

AND
Inactive

Traction Control

Inactive

Rev Limiting

XOR XOR

Driving Modes

Limiting Modes

XOR

Figure 5.1: Controller Modes

45

Chapter 6

Embedded Software Design

46

6.1 Introduction

A model-based design approach for the software development improves on the

current industry practice by using the model of the controller as the lowest level of imple-

mentation. Ideally, a compiler would use the model as source code and generates executable

code for the target platform without any manual steps. There are several potential benefits

to this process.

• Reduction in lines of hand-written code

• Reusability of components

• Improved accuracy of simulations

• Better control design

The goal is to eliminate hand-written source code, but if it is not possible to

eliminate it completely, at least the portion associated with the controller can be compiled

from the models. Reducing the amount of hand-written code translates into a reduction

in the amount of time spent debugging and testing code. The reuse of components such

as controllers or filters can reduce software development time. Currently, it is common for

the source code of controllers to be rewritten or tuned for each new application, but this

is an inefficient practice because it does not fully leverage previous control design work.

If the plant, sensor, and actuator models contain sufficient detail, stock controllers can be

modified at the model level, which minimizes redundant development work. [1] Besides

47

providing a more detailed model of the environment, the information about the software

and hardware environment, which is needed by the model compiler, improves the accuracy

of simulation. If software effects such as latency and jitter affect the controller performance

significantly, it will be seen during simulation rather than during testing. Also, information

from the software can be used to improve the performance of the controller or to reduce

the controller’s use of hardware resources, while maintaining the same performance. All of

these benefits equate to reduction in development time and system cost.

6.2 Background

The current automotive industry practice for design of control systems is to sep-

arate the task of control design from the task of implementing the controller in software.

[12] There are two problems with this division of labor. First, there is a duplication of

effort when the controllers are implemented once as models and again as source code. The

control engineers model the controllers in a high-level modeling language for simulation

and the software engineers re-implement the controllers in a low-level language such as C.

The second problem with the separation of the control design and the software design is

that the control is unable to use information from the software environment to improve

the performance or reduce the demand on the hardware. This means that the controller

is not making optimal use of the available information. Moreover, there are hardware and

software interactions that are not present in simulation because there is no model of the

software part of the system. The primary effects of the software environment on the con-

troller are jitter and additional end-to-end delay. The result of these software phenomena

48

on the system performance can be significant enough that the system design requirements

are not met even though they were met during simulation. These are the problems that the

model-based design approach targets.

6.3 Model-Based Design

The principle of the model-based design is that the high-level model of a controller

is the source code. Instead of modeling the system merely for simulation, the controller

portion of the model serves as the simulation and the implementation. There is no separate

low-level implementation. There are potentially large benefits of this approach to embedded

software design, measured in reduction of development time and reduction of system cost

when compared with the current industry practice.

6.3.1 Motivation

The standard process for design and testing of embedded systems is shown in

figure 6.1. [12] The process begins on the top left with the specification of requirements and

flows downward through design until an implementation is realized. On the right side of

the ”V” are the testing phases that correspond to design phases at the same level. Iteration

is a necessary part of the design process when a problem is discovered that requires some

design change at a previous step. A change that requires repeating many parts of the

process can be very costly. If, for example, a system level test fails and it is determined

that the requirements specifications were incorrect, the entire design process may need to

be repeated. The objective of the model-based approach is to do as much design work as

49

Implementation

Requirement
Specification

System
Specification

Module
Design

Module
Test

System
Design

System
Test

System
Delivery

System
Integration

High Cost

Low Cost

Implementation

Requirement
Specification

System
Specification

Module
Design

Module
Test

System
Design

System
Test

System
Delivery

System
Integration

ImplementationImplementation

Requirement
Specification

System
Specification

Module
Design

Module
Test

System
Design

System
Test

System
Delivery

System
Integration

High CostHigh Cost

Low CostLow Cost

Figure 6.1: ”V” Process for Design and Testing of Embedded Systems (Source: Man-Feng
Cheng, General Motors Corp.)

possible by simulation, analysis and testing with models, so design changes are relatively

cheap and quick to implement. In order to do this work, modeling tools are required, which

facilitate the modeling of the controller and the software with sufficient accuracy so that

problems can be discovered or even prevented during the design phases by simulation or

analysis. This need to model the software of the embedded control system motivates the

subsequent discussion of modeling constructs needed to model the software.

6.3.2 Embedded Software Modeling

There are some basic modeling constructs that are needed to model a real-time

software system properly:

• Tasks

50

• Scheduler

• Control-flow and Data-flow

Tasks

A task is a piece of sequential code that can be scheduled to run by the operating

system. In terms of a language such as C, a task could be some function. The scheduler

in the operating system knows how to call the function and accepts requests for the task

to run. [9] There are some properties of a task that are useful but not always necessary.

Usually an integer priority is assigned to a task. This value is used to determine, which of

task of several that are waiting to run should go first. Another property that can be used

for analysis or by the scheduler is worst-case execution time. This is an upper bound on

the time required for the task to execute once. In terms of the model, when a section of

the controller model is associated with a task, it is updated only when the scheduler tells

it to run, and there is a delay between the invocation of the task and the availability of the

output.

Scheduler

One of the basic services of a real-time operating system is the scheduler. Although

the exact functionality of the scheduler varies by operating system, the most basic functions

of the scheduler are the ability to take requests for tasks to run, to decide which of a number

of tasks waiting to run should run, and to invoke a task. The scheduler decides which

task should run based on an algorithm such as earliest-deadline-first (EDF) or priorities

51

generated by rate-monotonic analysis (RMA). For EDF scheduling, a deadline must be

associated with the request for a task to run, and for rate-monotonic analysis, each task

has a static period and the shortest period task receives the highest priority. [9]

Control-flow and Data-flow

Any algorithm that can be written in a programming language such as C, can be

thought of as a combination of control-flow and data-flow. Programming constructs such

as if-then-else are part of the control-flow of a program and calculations and assignment

operations are part of the data flow. [4] Because the objective is to replace the lower

level source code with the model of the controller, there needs to be a way of representing

control-flow and data-flow of the controller algorithm in the modeling language. There are

various ways of representing control and data-flow. It is important that the representation

is intuitive and maps to an efficient and unambiguous implementation. One such way to

represent the logic of control-flow is with a finite state machine. Actions can be taken upon

entering, leaving or remaining in a state. It is a particularly good choice in a control system,

in which a change of state is rare, because knowledge of the current state can be used to

achieve the minimum number of guards (i.e. conditions that cause a state transition) that

must be checked frequently.

52

6.4 Electronic Throttle Control Software Design

6.4.1 Modeling

Simulink and Stateflow were selected as the modeling environment for the ETC

system because this is an automotive industry standard. [12] A model in the Simulink envi-

ronment consists of a hierarchical structure of blocks whose input and output are specified

by wires drawn between blocks. Figure 6.2 shows the top-level of the ETC system as it

appears in Simulink (except for the removal of wire labels for readability). The simulation

contains the controller and the dynamics of the environment. The controller interacts with

the physical environment through the sensors and the drivers. These two components are

the interface of the controller software to the physical world. When code is generated from

the controller model, it requires the same interface to a set of sensors to measure plant states

and drivers to run the actuators. The focus of the ETC case study is on the modeling of

the controller.

Sufficient detail in the model of the system is important when designing a control

system that must make full use of the limited hardware capabilities. It is convenient to

assume that sampling is sufficiently fast, that the code requires approximately zero time

to run, or that the pulse-width modulation (PWM) of the actuator is of sufficiently high

enough frequency to be ignored. These approximations were not made in the ETC models

so that the performance could be examined when the system is running at the margin. The

expected benefit is that a more intelligent controller can be developed.

53

PWM
Driver

Electrical
Dynamics

Mechanical
Dynamics

Driver Input

Sensor
Dynamics

Controller

Figure 6.2: Top-level view of the ETC system

6.4.2 Controller Design

Control Flow

The ETC system has multiple modes of operation that require different control

law calculations. Control flow is required to route the path of execution through one or two

calculations and not through others. Figure 6.3 shows the states of the ETC system. In

the driving mode, the human driver mode and one of the cruise control modes are active in

parallel. This means that both the control law for following the accelerator pedal position

and the control law for maintaining the vehicle speed are calculated, which gives two values

for the desired motor current. The greater of the two values is used as the final output.

In the limiting mode, there is a similar situation with parallel states in the rev. limiting

and traction control modes. Again two calculations are made, but in the limiting mode,

the lesser of the two values is used for the final output. A State-chart (part of Stateflow) is

54

used to represent the modes, invoke a Simulink calculation from each mode and express the

conditions for switching between modes. The order of execution of parallel (i.e. AND) states

in a State-chart is established by the relative position of the two states. Order of execution

is an important part of the control-flow, so it is necessary that this property is specified,

but using the graphical position is a poor method and a weakness of the Stateflow interface.

Nevertheless, specifying order of execution makes it possible to create one state, whose

calculations are used to affect the state transitions or calculations of a second parallel state,

which are executed later but without a one controller period delay. In the ETC system, a

fault-detection state is executed before the controller mode state is selected. This way, if a

fault is detected, the subsequent evaluation of the controller mode state can immediately

switch into the fault-handling mode instead of being delayed by one period of the controller.

Data-flow

Wires that connect blocks show the assignment of the output of one block to

the input of the next. In the Simulink models of the ETC system, there is a distinction

between continuous-time and discrete-time valued wires. For instance, all the state values

of the plant are continuous time values and all values in the controller and in its set of

input and output values are discrete. The sensor dynamics include sampling of continuous

time values, which converts those values to a train of discrete values. On the output side

of the controller, discrete time values for desired current are produced as controller output

and at the beginning of each PWM cycle, the PWM receives the value, copies it locally

and applies voltage to the armature until the desired current level is reached. Copying the

desired current value locally is similar to a zero-order hold, although it is not precisely the

55

Start-up Shut-down

AND

Human Control

Inactive

Cruise

XOR

AND
Inactive

Traction Control

Inactive

Rev Limiting

XOR XOR

Driving Modes

Limiting Modes

XOR

Figure 6.3: States of the ETC system

56

same, because the PWM cycle does not match in phase or frequency with the period of the

controller.

Inside the controller there are three tasks, each of which runs periodically at a

different rate. Because a task has some execution time, then the inputs must be buffered

by copying to a local set of values. Then if an input is changed during execution of a task,

that change in value cannot affect the calculations being performed within the task.

Tasks

A stylized usage of Simulink is used to represent tasks. Within the controller

subsystem, there are subsystems that represent tasks and switching a particular trigger

signal runs a task. Because one run of a subsystem requires zero simulation time, the

output of a task must be delayed by some amount to account for the true delay from input

to output. One simple way to handle this is to apply a one-step delay to the outputs of

each task. The assumption is that the output from the previous invocation of a task must

be ready by the time of the next invocation. If a more realistic delay is required to improve

the system performance, then the scheduler can be used to retrieve the output of a task

some time after the invocation of the task, which then corresponds to the execution time.

The ETC system is composed of three tasks, which are triggered by a scheduler.

Figure 6.4 shows the structure. In the Simulink/Stateflow representation of the model, the

tasks, manager, monitor and servo-control are subsystems triggered by the scheduler. The

scheduler is driven by a 1 ms clock input. The tasks have different periods because some

parts of the control can be run much slower than other parts. More specifically, the servo-

control is responsible for the closed-loop control of the throttle position and needs to be

57

Clock
1 ms Scheduler

Task:
Manager
10 ms

Task:
Monitor
30 ms

Task:
Servo-control
3 ms

Figure 6.4: Triggering of tasks inside the ETC controller

run at over 300 Hz, but the manager is responsible for determining which of several types

of control (pedal-following control, cruise control, traction control or engine RPM limiting

control) should be active, and need only be performed about 100 times per second. The

monitor implements some fault detection, one of which is checking that the manager and

servo-control have run at least once in the previous period. By setting its period longer

than either the manger task or the servo-control task, then the manager and servo-control

should run one or more times for each run of the monitor.

The effect on controller performance of dividing the controller into tasks is the

addition of delay. As an example, consider the delay between two tasks, A and B, that

transfer data from one to the other. Suppose the following:

• A has a period of 3 ms

• B has a period of 5 ms

• The output of A is not available until the end of its period

58

5 9 12 18100 3 6 15 20

(a) A runs before B : max 2 ms delay

0 3 6 10 15 205 9 12 18

(b) A runs after B : max 3 ms delay

Figure 6.5: Task timing

• The output of A is the input of B

• If A and B both need to run at a given instant, then A runs before B

The worst-case delay from A to B is 2 ms. If the last condition is inverted so

that B runs before A if at a given instant they both need to run, then the worst-case delay

from A to B is 3 ms. Clearly, the latency of data-flow between tasks can be of the same

magnitude as the latency from input to output of a task.

Scheduler

The scheduler is responsible for triggering the execution of tasks. In the ETC

system, all the tasks have constant rates, so the scheduler has a static logic that triggers

the three subsystems at different multiples of the base clock rate. This triggering is done by

a Stateflow block, which has a fire and wait state associated with each task. Upon entering

59

a wait state, a counter is set to zero, and for each subsequent clock tick, the counter is

incremented by one. When the counter reaches a threshold value, a transition to the fire

state is taken and the task is invoked. After the fire state, the wait state is re-entered and

the process repeats itself. The Stateflow diagram that implements this simple scheduler

is shown in figure 6.6. Before entering the fire states that invoke the tasks, the output of

previous invocations of the tasks is retrieved and the new inputs for the next invocations

are buffered. The buffering of the inputs and outputs makes this diagram into a simple

Giotto program. See [5] for a description of Giotto. One feature of this design is that the

order of execution for the parallel fire states is irrelevant. More complicated scheduling

logic is possible, but there is also a limitation to this model framework. One type of task

that cannot be simulated in this framework is one with an internal synchronization point.

When Stateflow invokes the task, it is an uninterruptible action. Moreover, it would be

more useful for code generation to specify a type of scheduler and parameters rather than

the logic for the scheduler.

6.5 Conclusions

The ETC system is suitable for the model-based design approach of software design

because it is a practical real-time embedded software system with stringent cost limitations

and high safety and reliability requirements. Simulink/Stateflow is used as the modeling

environment because it is a current industry standard. With respect to software model-

ing, however, there are some deficiencies in the Simulink/Stateflow modeling environment.

Modeling the scheduler and tasks can be done by using a pre-defined style or the libraries

60

[ctr1>=20]

{trig_etc_manager_fast;}

{trig_etc_monitor_fast;}

[ctr2>=30]

{trig_etc_monitor_fast;}

[ctr3>=3]

[ctr1>=20]

{trig_etc_manager_fast;}

{trig_etc_monitor_fast;}

[ctr2>=30] {trig_etc_monitor_fast;}

[ctr3>=3]

[ctr1>=20]

{trig_etc_manager_fast;}

{trig_etc_monitor_fast;}
{trig_etc_monitor_fast;}

[ctr2>=30]
[ctr3>=3]

Retrieve_Outputs

1manager_output

1
monitor_output

2get_manager_output servo_control_output

3get_monitor_output

get_servo_control_output

wait_manager_output
entry:ctr1=0;
during: ctr1=ctr1+1; wait_monitor_output

entry:ctr2=0;
during: ctr2=ctr2+1;

wait_servo_control_output
entry:ctr3=0;
during: ctr3=ctr3+1;

Provide_Inputs

2manager_input

1
monitor_input

2send_manager_input servo_control_input

3send_monitor_input

send_servo_control_input

wait_manager_input
entry:ctr1=0;
during: ctr1=ctr1+1; wait_monitor_input

entry:ctr2=0;
during: ctr2=ctr2+1;

wait_servo_control_input
entry:ctr3=0;
during: ctr3=ctr3+1;

Invoke_Tasks

3
manager

1 monitor

2
invoke_manager

servo_control

3invoke_monitor
invoke_servo_control

wait_manager
entry:ctr1=0;
during: ctr1=ctr1+1; wait_monitor

entry:ctr2=0;
during: ctr2=ctr2+1; wait_servo_control

entry:ctr3=0;
during: ctr3=ctr3+1;

Figure 6.6: ETC static scheduler implemented in Stateflow

61

could be extended to include some generic scheduler and task blocks. It appears that ef-

ficiently modeling complicated tasks (a task with internal synchronization points) would

require altering the Simulink/Stateflow simulation engine.

The model-based design requires extra modeling effort up front in return for ben-

efits later in the design process. Creating a model that is used for simulation, analysis,

testing as well as the source for the control software, eliminates the usual duplication of

effort needed to convert the models manually to source code. Reducing the amount of hand-

written code in the embedded software system will reduce the time spent in debugging and

maintenance of the code. The additional modeling detail, such as software structure, in-

creases the accuracy and information available from simulation, and as a result increases

the likelihood that the actual system will behave like the simulation and that problems will

be discovered during simulation. Once a generic model component has been fully developed

and tested, it can be stored in a library for later use. In this manner, an organization can

fully leverage previous design work. The replacement of source code with models and the

reuse of model components requires more detailed and structured models, but promises to

reduce the development time and total system cost of embedded control systems.

62

Chapter 7

Simulink/Stateflow Models

63

7.1 Modeling in Simulink/Stateflow

7.2 Complete System Model

The top most level of the ETC model contains the driver, actuator plant, sensor

and controller models and specifies the interconnection of these models. This level of the

model contains a mixture of continuous and discrete signals. For instance, the sensor

values provided to the controller and the controller output are discrete signals, but the

motor current and the throttle position are continuous signals. The driver inputs and

powertrain inputs provide dummy data as a substitute for inputs from the human driver

and the powertrain. The feedback around the actuator and plant model reveals the coupling

between the electric dynamics of the motor and the mechanical dynamics of the throttle

plate. The signals available to the sensors are strictly those that can be measured with the

hardware and the controller receives these signals with noise.

7.3 Plant Model

The plant model in figure 7.2 represents graphically the second-order, nonlinear

differential equation of the throttle plate mechanical dynamics. The presence of the inte-

grator blocks in the diagram requires that the system be a continuous model. The nonlinear

sign block models the Coulomb friction and the nonlinear saturation block models the phys-

ical constraint of the throttle plate within the range of 0 to 90 degrees. The back EMF

output is feedback to the actuator model and the throttle angle is provided to the sensors.

64

Use the "Start/Stop" selection in the "Simulation" pull-down menu to run the simulation

actual _current

alpha

accelerator_position

powertrain_inputs

throttle_signals

misc_sensors

sensorsertrain_inputs

powertrain_inputs

normalized_motor_torque

throttle_angle

back_emf

plant

motor_current

desired_current

pwm

direction

drivers
alpha_cmd

driver_inputs

throttle_signals

misc_sensors

desired_current

controller

pwm_state

direction

back_emf

motor_current

normalized_trq_throttle

actuators

View Read-Me fileRe-Initialize Plot Results

Electronic Throttle Control (ETC) Example
Developed by Vehicle Dynamics Lab

Paul Griffiths, Jason Souder, Mark Wilcutts
University of California, Berkeley

Version 2.0

0

DisplayClock

<desired_current>

<alpha_cmd>
<trq_throttle>

<cruise_on, cruise_set, cruise_coast, cruise_accel, o2s, mfc, ign_on_off, wwf, we, V, Te, Te_max, PRNDL, brake_switch>

<alpha>

<cruise_on, cruise_set, cruise_coast, cruise_accel, o2s, mfc, ign_on_off, wwf, we, V, map, map_max, PRNDL, brake_switch>

<tps1_volts, tps2_volts, alpha_cmd, actual_current>
<motor_amps>

<back_EMF>

<pwm>

Figure 7.1: Top-level ETC model

65

This is a model of the mechanical portion of the throttle valve.
Note that the throttle valve and the electric motor used to actuate the valve

have been separated out here into a "Actuators" and "Plant" section.
In the vehicle model, they may be integrated into a single actuators block.

The throttle angle signal will be sensed on
engine by a potentiometer, called a TPS: th

position sensor.

The physical system can not sense
the throttle angle velocity, so this signal
will not be output to the sensors block.

2
back_emf

1
throttle_angle

Kt

torque_constant

theta_eq

theta_eq

Ks_J

theta-theta_eq gain

Kf_J

sgn(omega) gain

Kd_J

damping gain

alpha

To Workspace

Sign Saturation

1
s

Integrator1

1
s

Integrator

1
normalized_motor_torque

sigma_T back_EMF<trq_throttle>
w_throttle

w_throttle

alpha

alpha

alpha alpha

Figure 7.2: Model of the throttle plate dynamics

66

7.4 Sensor Models

The sensor model in figure 7.3 converts the ideal signals that are measured by the

hardware into realistic signals with noise and then samples the signals to provide a train of

discrete sensor values to the controller. The single throttle position is split into two throttle

position signals with uncorrelated noise. They are also correctly converted to voltages that

complement each other such that they add to approximately 5 volts under normal operation.

A switch block is provided so that the signals can be grounded to simulate a fault. After

the sample block, the signals are delayed by one sample period to model the acquisition

delay of the analog-to-digital converter hardware. Figure 7.4 looks inside the acquisition

delay block, which reveals a unit delay block. Figure 7.5 shows that the sampling behavior

is accomplished by simply passing the signals straight through a sub-system, but since the

sub-system is triggered, the continuous input shows up on the output only when triggered.

7.5 Controller Model

The top-most level of the controller model, shown in figure 7.6, reveals the schedul-

ing of the controller tasks and the input and output that the controller has with the environ-

ment. The scheduler component is triggered by a 1 ms clock and generates triggers for the

three controller tasks. Figure 7.7 shows how the Stateflow chart generates triggers at the

three different rates for the three tasks. A software failure can be simulated by grounding

the trigger signal for one or more of the tasks.

Whereas the top-most level of the controller model captures the controllers inter-

action with the environment, figure 7.8 reveals how data moves between tasks.

67

These sensors are all included in the actual powertrain model. They
are omitted here for simplicity, but must be included for accurate vehicle simulations.

Models sensor (LVDT or pot) on accelerator pedal.

The two potentiometers are linear and vary
between about 0.5 and 4.5 Volts and are supplied by a regulated

5 Volt supply. The potentiometer signals are complimentary - their
sum is should always be the source voltage, 5 Volts.

The sensors block here models a redundant throttle position sensor (TPS).
The sensor acts as a potentiometer to sense current throttle position. In general,

the sensors models may include any scaling, hysteresis, deadband, time delays, etc. introduced
by the sensors.

Simulate a fault in one of the
throttle position sensors (e.g. a grounding

of the sensor). Currently, the model can switch
to "limp-home" mode if the two throttle position

sensors do not agree to within a given bound, but
failure of both sensors is not detected.

2

misc_sensors

1

throttle_signals

tps1_gain_rad2volts

gain3

pedal_gain_rad2volts

gain2

tps2_gain_rad2volts

gain1

throttle_signals

To Workspace

Random
Number2

Random
Number1

Random
Number

Ground1

Ground

In1 Out1

Dummy Sample and Hold3

In1 Out1

Dummy Sample and Hold2

tps2_volt_offset

Constant1

tps1_volt_offset

Constant

In1 Out1

Acq Delay1

In1 Out1

Acq Delay

1 ms Clock

4

powertrain_inputs

3

accelerator_position

2

alpha

1

actual _current

alpha_cmd

tps2_volts

tps1_volts

<cruise_on, cruise_set, cruise_coast, cruise_accel, o2s, mfc, ign_on_off, wwf, we, V, Te, Te_max, PRNDL, brake_switch> <cruise_on, cruise_set, cruise_coast, cruise_accel, o2s, mfc, ign_on_off, wwf, we, V, map, map_max, PRNDL, brake<cruise_on, cruise_set, cruise_coast, cruise_accel, o2s, mfc, ign_on_off, wwf, we, V, Te, Te_max, PRNDL, brake_switch>

<tps1_volts, tps2_volts, alpha_cmd, motor_amps> <tps1_volts, tps2_volts, alpha_cmd, actual_current><tps1_volts, tps2_volts, alpha_cmd, motor_amps>

<alpha_cmd>

volts
volts

v_offset

volts
volts

v_offset

<alpha> tps1_volts

tps2_volts

<motor_amps>

Figure 7.3: Model of the sensors with noise

68

1
Out1

z

1

Unit Delay2

m

Trigger

1
In1

<tps1_volts, tps2_volts, alpha_cmd, motor_amps> <tps1_volts, tps2_volts, alpha_cmd, actual_current>

tps1_volts

tps2_volts

alpha_cmd

actual_current

Figure 7.4: Model of the acquisition delay

69

1
Out1

Trigger

1
In1

<tps1_volts, tps2_volts, alpha_cmd, motor_amps>

Figure 7.5: Model of the sensor sampling

70

NOTE: If a pulse from these 2 clocks occurs at the same
time, the stateflow block will process the top clock first

regardless of the scheduling outlined in the stateflow block.

This block represents all software-based
calculations that must be modeled. Other functions, such

as determining engine speed from a hall-effect or magnetic
pick-up sensor that may be accomplished by a timer

processing unit (TPU) or other hardware need not be
included here.

An explicit scheduler is used to
determine which task should be triggered first. Note

that block execution is not user-defined in Simulink but
is user-defined (based on a top-left to bottom-right style)

from within Stateflow.

These manual switches can be used
to simulate a fault in a specific task. When

clicked, the corresponding portion
of the controller will be enabled/disabled.
Note that the monitor and manager must

be able to communicate to handle a fault so
disabling either of them will not change the mode

of operation.

1

desired_current

controller_period

trig_etc_manager_fast

trig_etc_monitor_fast

trig_etc_servo_control_fast

scheduler1

trig_etc_manager_fast

trig_etc_monitor_fast

trig_etc_servo_control_fast

tps1

tps2

alpha_cmd

actual_current

cruise_on

cruise_set

cruise_coast

cruise_acc

o2s

mfc

ign_on_off

wwf

we

v

map

map_max

PRNDL

brake_switch

desired_current

controller_software

Ground

m

m

ControllerPeriod

Controller Period

1 ms_clock

2

misc_sensors

1

throttle_signals

<desired_current>

trig_fast

<tps1_volts, tps2_volts, alpha_cmd, actual_current>

<cruise_on, cruise_set, cruise_coast, cruise_accel, o2s, mfc, ign_on_off, wwf, we, V, map, map_max, PRNDL, brake_switch>

<tps1_volts>

<tps2_volts>

<alpha_cmd>

<cruise_on>

<cruise_set>

<cruise_coast>

<cruise_accel>

<o2s>

<mfc>

<ign_on_off>

<wwf>

<we>

<V>

<map>

<map_max>

<PRNDL>

<brake_switch>

trig_etc_manager_fast
trig_etc_manager_fast

no_trigger

no_trigger

no_trigger

trig_etc_servo_control_fast
trig_etc_servo_control_fast

trig_etc_monitor_fast
trig_etc_monitor_fast

<actual_current>

Figure 7.6: Top-most model of the control software

71

scheduler

manager 1

[ctr1>=20]

active_manager

{trig_etc_manager_fast;}

wait_manager
entry:ctr1=0;
during: ctr1=ctr1+1; monitor 2

[ctr2>=30]

active_faults

{trig_etc_monitor_fast;}

wait_faults
entry:ctr2=0;
during: ctr2=ctr2+1;

servo 3

[ctr3>=controller_period]

{trig_etc_servo_control_fast;}

wait_servo
entry:ctr3=1;
during: ctr3=ctr3+1;

Figure 7.7: State-chart to trigger the execution of controller tasks

72

1
desired_current

trig_etc_servo_control_fast

tps1

tps2

alpha_cmd

cruise_on

cruise_set

cruise_coast

cruise_acc

o2s

mfc

ign_on_off

wwf

we

v

map

map_max

PRNDL

brake_switch

which_mode

which_driving_cruise

which_limiting_rev

which_limiting_traction

which_faults

desired_current

task_servo_cntr

etc_servo_control_v2.1

trig_etc_monitor_fast

tps1

tps2

actual_current

manager_task_cntr

servo_task_cntr

desired_current

which_faults

etc_monitor_v1.1

trig_etc_manager_fast

tps1

tps2

alpha_cmd

cruise_on

cruise_set

cruise_coast

cruise_acc

o2s

mfc

ign_on_off

wwf

we

v

map

Te_max

PRNDL

brake_switch

which_faults

which_mode

which_driving_cruise

which_limiting_rev

which_limiting_traction

task_manager_cntr

etc_manager_v2.1

[desired_current]

Goto7

[task_servo_cntr]

Goto6

[task_manager_cntr]

Goto5

[which_limiting_traction]

Goto4

[which_faults]

Goto3

[which_mode]

Goto2

[which_driving_cruise]

Goto1

[which_limiting_rev]

Goto

[desired_current]

[which_faults]

[task_servo_cntr]

[task_manager_cntr]

which_limiting_traction]

[which_faults]

[which_limiting_rev]

[which_driving_cruise]

[which_mode]

21
brake_switch

20
PRNDL

19
map_max

18
map

17
v

16
we

15
wwf

14
ign_on_off

13
mfc

12
o2s

11
cruise_acc

10
cruise_coast

9
cruise_set

8
cruise_on

7
actual_current

6
alpha_cmd

5
tps2

4
tps1

3
trig_etc_servo_control_fast

2
trig_etc_monitor_fast

1
trig_etc_manager_fast

<which_faults>

<which_limiting_traction>

<which_limiting_rev>

<which_driving_cruise>

<which_mode>

trig_etc_manager_fast

<trig_etc_servo_control_fast>

<which_limiting_traction>

<desired_current>

<which_limiting_rev>

<which_driving_cruise>

<which_mode>

<brake_switch>

<brake_switch>

<PRNDL>

<PRNDL>

<map_max>

<map_max>

<map>

<map>

<V>

<V>

<we>

<we>

<wwf>

<wwf>

<ign_on_off>

<ign_on_off>

<mfc>

<mfc>

<o2s>

<o2s>

<cruise_accel>

<cruise_accel>

<cruise_coast>

<cruise_coast>

<cruise_set>

<cruise_set>

<cruise_on>

<cruise_on>

<alpha_cmd>

<alpha_cmd>

<which_faults>

<tps2_volts>

<tps2_volts>

<tps2_volts>

<tps1_volts>

<tps1_volts>

<tps1_volts>

<trig_etc_monitor_fast>

<task_manager_cntr>

<task_servo_cntr>

<task_manager_cntr>

<task_servo_cntr>

<which_faults>

<actual_current>

<desired_current>

Figure 7.8: Model of the data-flow between tasks

73

7.5.1 Manager Task Model

Figure 7.9 and 7.10 define the complete model of the manager task. The numbers

in the parallel states of the manager logic indicate the sequence in which the states are

processed. First the task counter is incremented and the inputs are sampled. Then the real

work of the manager is taken care of, which requires deciding which mode of control should

be run based on the current inputs from the driver and the powertrain.

7.5.2 Monitor Task Model

The monitor task checks for software and hardware faults. The top-level model of

the task is shown in figure 7.11. The Stateflow chart in figure 7.12 models the control-flow

of the task. First the inputs are sampled. Then checks are made for software faults and

hardware faults.

To check for a software fault, the monitor task reads the task counters from the

manager and servo-control tasks each time it runs. Because the monitor task runs at the

lowest frequency of the three tasks, the manager and servo-control task counters should

have incremented several times. If a comparison against the last task counter value shows

that either of the tasks has not run, then a software error is flagged.

There are two possible failures of the throttle position sensors that may occur. If

the voltage source fails, then both signals will be off. If one of the potentiometers fails,

then only one signal will be incorrect. In either case, a mismatch between the signals will

indicate an error.

The motor current measurement is used to detect a failure of the motor. The

74

5
task_manager_cntr

4
which_limiting_traction

3
which_limiting_rev

2
which_driving_cruise

1
which_mode

Trigger()

In1 Out1

sample

CruiseSwitch

CoastSwitch

Ign_switch

we

V

map

map_max

PRNDL

BrakeSwitch

we_max

SelectDrivingCruise

SelectDrivingCruiseMin

SelectLimitingRev

SelectLimitingRevMax

SelectLimitingTraction

SelectLimitingTractionMax

SelectStartup

SelectDriving

SelectLimiting

SelectLimpHome

SelectShutdown

which_faults

which_mode

which_driving_cruise

which_limiting_rev

which_limiting_traction

task_manager_cntr

DoSample

etc_manager_fast_mode_switch

Terminator8

Terminator7

Terminator6

Terminator5

Terminator4

Terminator3

Terminator2

Terminator1

[do_sample]

Goto

[do_sample]

m

SelectLimiting

SelectDriving

SelectStartup

SelectLimitingTraction

SelectLimitingRevMax

SelectLimitingRev

SelectDrivingCruiseMin

SelectLimitingTractionMax

SelectShutdown

SelectLimpHome

SelectDrivingCruise

we_max

Constant

19
which_faults

18
brake_switch

17
PRNDL

16
map_max

15
map

14
v

13
we

12
wwf

11
ign_on_off

10
mfc

9
o2s

8
cruise_acc

7
cruise_coast

6
cruise_set

5
cruise_on

4
alpha_cmd

3
tps2

2
tps1

1
trig_etc_manager_fast

<which_faults>

task_manager_cntr

<do_zoh>

<trig_etc_manager_fast>

<alpha_cmd>

<tps1_volts>

<tps2_volts>

<cruise_on>

we_max

<tps1_volts>

<tps2_volts>

<alpha_cmd>

<cruise_on>

<cruise_set>

<cruise_coast>

<cruise_accel>

<o2s>

<mfc>

<ign_on_off>

<wwf>

<we>

<V>

<map>

<map_max>

<PRNDL>

<brake_switch>

<cruise_set>

<cruise_accel>

<o2s>

<mfc>

<brake_switch>

<PRNDL>

<map_max>

<map>

<V>

<we>

<cruise_coast>

<wwf>

which_limiting_rev

which_driving_cruise

which_mode

<ign_on_off>

which_limiting_traction

do_zoh

Figure 7.9: Model of the manager task

75

TaskCounter

1
[task_manager_cntr >= 1000]

Count
during:task_manager_cntr = task_manager_cntr+1;

Reset
entry:task_manager_cntr = 0;

Sample

2
Sample_state
during:DoSample;

Control

3

[which_faults == 0 && ...
limphome_cntr >= 100]

[which_faults == 1]

[! Ign_switch || !(which_faults == 0 ...
|| which_faults == 1)]

[! Ign_switch || !(which_faults == 0 ...
|| which_faults == 1)]

Startup
entry: which_mode=SelectStartup

Running

[we < we_max*OverRevHyst && ...
map < map_max*TracCtrlHyst][we > we_max || map > map_max]

Driving_Modes
entry: which_mode=SelectDriving

Cruise_Control

1
[V>30 && PRNDL==3 ...
&& BrakeSwitch == 0 ...
&& CruiseSwitch == 1 ...
&& CoastSwitch == 0]

[! (V>30 && PRNDL==3 ...
&& BrakeSwitch == 0 ...
&& CruiseSwitch == 1 ...
&& CoastSwitch ==0)]

Inactive
entry: which_driving_cruise=SelectDrivingCruiseMin

Active
entry: which_driving_cruise=SelectDrivingCruise

Human_Control

2

Limiting_Modes
entry: which_mode=SelectLimiting

Rev_Limiting

1[we > we_max]

[we < we_max*OverRevHyst]

[we > we_max] [we < we_max*OverRevHyst]

Inactive
entry: which_limiting_rev=SelectLimitingRevMax

Active
entry: which_limiting_rev=SelectLimitingRev

Traction_Control

2[map > map_max]

[map < map_max*TracCtrlHyst]

[map > map_max]

[map < map_max*TracCtrlHyst]

Inactive
entry: which_limiting_traction=SelectLimitingTractionMax

Active
entry: which_limiting_traction=SelectLimitingTraction

LimpHome
entry: which_mode=SelectLimpHome
limphome_cntr=0;

[limphome_cntr >= 10000]

Count
during:limphome_cntr=limphome_cntr+1;

Reset
entry:limphome_cntr =1000;

Shutdown
entry: which_mode=SelectShutdown

Figure 7.10: Model of the manager task logic

76

Current Fault values:

FaultNoFault = 0;
FaultHardwareTPS = 1;

FaultHardwareActuator = 2;
FaultSoftwareManagerTask = 4;

FaultSoftwareServoTask = 8;

1
which_faults

Trigger()

zero_order_hold1

DoSample

DoTaskFaultDetection

DoActuatorFaultDetection

DoTPSFaultDetection

etc_monitor_fast_ctl

trigger()

tps1

tps2

tps_fault

etc_fast_tps_fault_detection

trigger()

manager_task_cntr

servo_task_cntr

manager_task_fault

servo_task_fault

etc_fast_task_fault_detection

trigger()

actual_current

desired_current

which_faults

etc_fast_actuator_fault_detection

tps2_held

To Workspace4

tps1_held

To Workspace3

tps2_monitor

To Workspace2

tps1_monitor

To Workspace1

which_faults

To Workspace

[do_sample]

Goto

FaultHardwareActuator

Gain4

FaultHardwareTPS

Gain3

FaultSoftwareServoTask

Gain2

FaultSoftwareManagerTask

Gain1

[do_sample]

7
desired_current

6
actual_current

5
servo_task_cntr

4
manager_task_cntr

3
tps2

2
tps1

1
trig_etc_monitor_fast

<actuator_fault>

hardware_faults

tps

<servo_task_cntr_held>

<manager_task_cntr_held>

<desired_current>

<actual_current>

software_faults

do_actuator_fault_detection

<desired_current>

<actual_current>

<task_servo_cntr>

<task_manager_cntr>

which_faults

<servo_task_fault>

<manager_task_fault>

<tps_fault>

do_task_fault_detection

<tps2_held>

<tps1_held>

<tps2_volts>

<tps1_volts>

<do_zoh>

do_zoh

do_tps_fault_detection

<trig_etc_monitor_fast>

Figure 7.11: Model of the monitor task

77

Sampling 1

SampleState
during:DoSample;

FaultDetectionSoftware 2

software
during:DoTaskFaultDetection;

FaultDetectionHardware 3

hardware1
during:DoTPSFaultDetection; 1

hardware2
during:DoActuatorFaultDetection; 2

Figure 7.12: Model of the monitor task logic

78

The manager has a discrete integrator that
gets updated each time it is run. Since this task

is running at a slower rate, make sure the integrator
has been updated. If not, trigger a fault to indicate

a task is not running.

The faults are detected here and the output value
corresponds to a failure handling mode. A zero output

value indicates that no fault was detected.

2
servo_task_fault

1
manager_task_fault

z

1

Unit Delay1

z

1

Unit Delay

Switch1

Switch

1

Constant3

0

Constant2

1

Constant1

0

Constant

|u|

Abs1

|u|

Abs

f()

trigger

2
servo_task_cntr

1
manager_task_cntr

<servo_task_cntr_held>

<manager_task_cntr_held>

servo_task_fault

manager_task_fault

Figure 7.13: In this sub-system, the current task counters of the manager and servo-control
task are compared against the last set of values.

79

The faults are detected here and the output value
corresponds to a failure handling mode. A zero output

value indicates that no fault was detected.

Two possible TPS failures can be trapped
here. First, if the voltage source is fine, but

the absolute error between the two TPS
signals is larger than an acceptable threshold,
then an error is indicated. An error will also be

indicated if the voltage source has failed.

1
tps_fault

ps_summation

To Workspace

Switch
tps_voltage_source

Constant2

0

Constant1

1

Constant

|u|

Abs

f()

trigger

2
tps2

1
tps1

<tps1_held>

<tps2_held>

tps_fault

Figure 7.14: An attempt to detect a failure of the throttle position sensors is made in this
model.

80

controller produces a desired motor current as an output, against which the measured

motor current can be compared. Some allowance most be made for a mismatch between

the two since the desired current may change more rapidly than the actual current can

change.

The error between the desired
current to the actuator and the actual current

(feedback) is compared to a threshold to check for complete actuator failure

The faults are detected here and the output value
corresponds to a failure handling mode. A zero output

value indicates that no fault was detected.

1
which_fault

Saturation

==

Relational
Operator1

min_motor_amps

Constant1

max_motor_amps

Constant

|u|

Abs

f()

trigger

2
desired_current

1
actual_current actuator_fault

error<actual_current>

<desired_current>

Figure 7.15: An attempt to detect a bad failure of the motor is made in this model.

81

7.5.3 Servo-control Task Model

The top-level model of the servo-control model in figure 7.16 shows the Stateflow

chart that triggers the appropriate sub-systems. Just like the manager and monitor tasks,

the inputs are first sampled. Then filtering of the input signals is triggered. Based on the

inputs from the manager, the appropriate control algorithm is selected by triggering one of

the controller sub-systems and a switch input is provided so that the matching output is

captured in the end and returned as the final controller output.

Take the maximum of either human control
or the calculated throttle angle from the cruise
control. This models the driver depressing the

accelerator while cruise control is still on.

The merge block will accept any number of inputs.
Its output is the most recently updated of all its inputs. It is a simple

method of selecting the signal from the current mode. An alternative to
the merge block would be the multiport switch. If the mutliport switch is used,

the Stateflow controller will have to keep track of the current mode and
provide the mode to the switch to select the correct signal.

2

task_servo_cntr

1

desired_current

tps_volts1 tps_rads

tps2_2rad

tps_volts tps_rads

tps1_2rad

Trigger()

In1 Out1

sample_inputs

tps_volts1 tps_rads

pedal2rad

w hich_mode

w hich_driving_cruise

w hich_limiting_rev

w hich_limiting_traction

w hich_faults

SelectDrivingCruise

SelectDrivingCruiseMin

SelectLimitingRev

SelectLimitingRevMax

SelectLimitingTraction

SelectLimitingTractionMax

SelectStartup

SelectDriving

SelectLimiting

SelectLimpHome

SelectShutdow n

task_servo_cntr

ResetPedalFilter

force_shutdow n

DoSample

DoDelay

DoStartup

DoShutdow n

DoLimpHome

DoDrivingHuman

DoDrivingCruise

DoDrivingCruiseMin

DoLimitingRev

DoLimitingRevMax

DoLimitingTraction

DoLimitingTractionMax

DoTPS

DoPedalFilter
L

etc_servo_control_fast_ctl

Trigger()

motor_amps

etc_fast_startup

Trigger()

motor_amps

etc_fast_shutdown

Trigger()
alpha_cmd

reset

reset_pos

reset_vel

reset_accel

w hich_mode

pedal_pos

pedal_vel

pedal_accel

etc_fast_pedal_filter

Trigger()

desired_current_in desired_current

etc_fast_one_sample_delay

Trigger()
tps_pos

tps_vel

pedal_pos

pedal_vel

pedal_accel

motor_amps

etc_fast_limp_home

Trigger()

motor_amps

etc_fast_limiting_traction_max

Trigger()
tps_pos

tps_vel

map

map_max

motor_amps

etc_fast_limiting_traction

Trigger()

motor_amps

etc_fast_limiting_rev_max

Trigger()
tps_pos

tps_vel

We

motor_amps

etc_fast_limiting_rev

Trigger()
tps_pos

tps_vel

pedal_pos

pedal_vel

pedal_accel

motor_amps

etc_fast_driving_human

Trigger()

motor_amps

etc_fast_driving_cruise_min

Trigger()
tps_pos

tps_vel

vehicle_speed

motor_amps

etc_fast_driving_cruise

Trigger()

tps1

tps2

pedal_pos

w hich_mode

tps_pos

tps_vel

etc_fast_TPS_filter

pedal_pos

To Workspace4

pedal_control

To Workspace3

tps2_control

To Workspace2

tps1_control

To Workspace1

desired_current

To Workspace

Terminator9

Terminator8

Terminator7

Terminator6

Terminator5

Terminator4

Terminator3

Terminator2

Terminator1

Terminator

Mode Switch4

Mode Switch3

Mode Switch2

Mode Switch1

Mode Switch

min

MinMax1

max

MinMax

[limiting]

Goto9

[which_limiting_rev]

[driving]

Goto7

[do_shutdown]

[do_limiting_rev_max]

[do_driving_cruise]

[force_shutdown]

[reset_pedal_filter]

[tps_vel]

Goto34

[tps_pos]

Goto33

[map]

[map_max]

[engine_speed]

[do_limiting_traction]

[vehicle_speed]

[pedal_accel]

Goto28

[pedal_vel]

Goto27

[startup]

[do_limiting_traction_max]

[do_limp_home]

[pedal_pos]

Goto23

[tps2_rads]

Goto22

[tps1_rads]

Goto21

[do_pedal_filter]

[do_limiting_rev]

[which_limiting_traction]

[which_mode]

[do_startup]

[which_driving_cruise]

[do_delay]

[do_sample]

[shutdown]

[limp_home]

[alpha_cmd]

Goto11

[do_tps_filter]

[do_driving_human]

[do_driving_cruise_min]

[do_sample]

[which_limiting_traction]

[which_limiting_rev]

[do_driving_cruise]

[shutdown]

[force_shutdown]

[do_limiting_rev]

[reset_pedal_filter]

From49

[which_mode]

From48

[tps_vel]

From47

[tps_pos]

From46

[map_max]

[map]

[engine_speed]

[vehicle_speed]

[tps_vel]

[tps_pos]

[which_driving_cruise]

[tps_vel]

[tps_pos]

[tps_vel]

[tps_pos]

[tps_vel]

[tps_pos]

[tps_vel]

[tps_pos]

[pedal_accel]

[pedal_vel]

[do_driving_human]

[pedal_pos]

[startup]

[do_startup]

[do_limiting_traction_max]

[do_limiting_rev_max]

[do_driving_cruise_min]

[pedal_pos]

From23

[which_mode]

From22

[pedal_accel]

[pedal_vel]

[do_shutdown]

[pedal_pos]

[do_pedal_filter]

From18

[alpha_cmd]

From17

[limp_home]

[do_delay]

[do_tps_filter]

From14

[shutdown]

[limiting]

[driving]

[which_mode]

[do_limp_home]

[do_limiting_traction]

m

SelectLimiting

SelectDriving

SelectStartup

SelectLimitingTraction

SelectLimitingRevMax

SelectLimitingRev

SelectDrivingCruiseMin

SelectLimitingTractionMax

SelectShutdown

SelectLimpHome

SelectDrivingCruise

0

Constant

23

which_faults

22

which_limiting_traction

21

which_limiting_rev

20

which_driving_cruise

19

which_mode

18

brake_switch

17

PRNDL

16

map_max

15

map

14

v

13

we

12

wwf

11

ign_on_off

10

mfc

9

o2s

8

cruise_acc

7

cruise_coast

6

cruise_set

5

cruise_on

4

alpha_cmd

3

tps2

2

tps1

1

g_etc_servo_control_fast

motor_volts

<map_max>

<map>

<do_driving_human>

<do_driving_human>

<V>

<w e>

<do_driving_human>

<do_driving_human>

<>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<do_driving_human>

<alpha_cmd>

do_tps_filter

<tps2_rads>

<tps1_rads>

<alpha_cmd>

<w hich_limiting_rev>

<brake_sw itch>

<PRNDL>

<w w f>

<ign_on_off>

<o2s>

<cruise_accel>

limiting

<motor_amps>

<motor_amps>

<w hich_limiting_traction>

<w hich_limiting_rev>

<motor_amps>

<motor_amps>

driving

<>

<motor_amps>

<motor_amps>

<motor_amps>

<do_startup>

<motor_amps>

<do_shutdow n>

<do_limp_home>

<w hich_driving_cruise>

<do_limiting_rev_max>

do_limiting_traction_max

do_limiting_traction

do_limiting_rev_max

do_limiting_rev

do_driving_cruise_min

do_driving_cruise

do_driving_human

do_limp_home

do_shutdow n

do_startup

do_delay

do_sample

<cruise_coast>

<cruise_set>

<cruise_on>

<w hich_faults>

<w hich_limiting_traction>

<w hich_driving_cruise>

<w hich_mode>

<brake_sw itch>

<PRNDL>

<map_max>

<map>

<V>

<w e>

<w w f>

<ign_on_off>

<mfc>

<o2s>

<cruise_accel>

<cruise_coast>

<cruise_set>

<cruise_on>

<tps2_volts>

<tps1_volts>

<trig_etc_servo_control_fast>

desired_current

<do_limiting_traction_max>

<do_driving_cruise_min>

<do_delay>

<do_limiting_traction>

<do_driving_human>

<do_limiting_rev>

<do_driving_cruise>

<mfc>

<do_zoh>

task_servo_cntr

Figure 7.16: The top-level of the servo-control task model

82

There are two TPS signals provided to the controller. In the model of the TPS

filter (figure 7.17) a choice is made between using the average of both signals or trying to

determine if the one best signal. Figure 7.18 shows the averaging of the two signals and

figure 7.19 shows how the signal which is closest to the desired value. (This method would

be more reliable if the TPS signals were compared with the expected response based on the

commanded motor current and the measured current.)

Filter the tps signal to get a filtered position and velocity

Decide based on the mode,
whether the system is in the
limp-home mode. If so, then

try to select the best signal, othewise
average the two tps signals.

2
tps_vel

1
tps_pos

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

velocity_filter

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

position_filter

filtered_tps

To Workspace2

function()

tps1

tps2

pedal_pos

tps

Select_Best_TPS

Merge

Merge

[do_select_best_tps]

Goto4

[tps2]

Goto3

[tps1]

Goto2

[do_average_tps]

Goto1

[do_select_best_tps]

From3

[do_average_tps]

From2

[tps2]

From1

[tps1]

From

SelectLimpHome

Constant

which_mode

SelectLimpHome

do_average_tps

do_select_best_tps

L
Chart

function()

tps1

tps2

tps

Average_TPS

f()

Trigger
4

which_mode

3
pedal_pos

2
tps2

1
tps1

<alpha_cmd>

Figure 7.17: Filter for the TPS signal

A resettable non-linear filter is applied to the pedal position in order to provide

83

Average the two throttle position sensor values

1
tps

0.5

Gain

f()

function

2
tps2

1
tps1

Figure 7.18: The two TPS signals are averaged to obtain a better estimate of the throttle
position.

a reference position and velocity that are continuous and ”slow” enough that the closed-

loop system can track them. If the reference signals deviate too much from the actual plant

states, the response to standard test signals, like a step input, is degraded. This filter design

simulates the closed-loop system with a model of the plant in figure 7.21 and a simplified

model of the controller in figure 7.22. There are two important features offered by this filter

structure. The plant model includes the saturation of the motor so the dynamics of the

plant states are limited by this important nonlinearity. Also, the fact that the filter states

are also the plant states makes resetting the values to the plant values relatively easy. This

reset feature is used whenever there is a switch between control laws.

The controller modeled in figure 7.23 is the control law defined in equation 4.14

with the adaption update given by equation 4.20. A manual switch towards the top of the

84

One of the tps sensors may be bad.
Let's check them against their bounds, and

then compare them against the desired throttle angle and use
the one that we think is providing the best estimate.

Compare tps volts against alpha_cmd volts
since they have the same range.

1
tps

Switch

Saturation2

Saturation1

<=

Relational
Operator

|u|

Abs1

|u|

Abs

f()

function

3
pedal_pos

2
tps2

1
tps1

tps

Figure 7.19: This model is used to select one TPS if the monitor has indicated that one has
failed

85

3
pedal_accel

2
pedal_vel

1
pedal_pos

filt_pedalpos

To Workspace2

filt_x

To Workspace1

filt_u

To Workspace

Saturation1

Saturation

==

Relational
Operator

u

reset

reset_pos

reset_vel

reset_accel

y

Y_dot

Y_ddot

x

Plant

Multiport
Switch

pre_F.num{1}(z)

pre_F.den{1}(z)

Discrete Filter

x

pedal

u

Controller

1

Constant1

SelectLimpHome

Constant

f()

Trigger

6
which_mode

5
reset_accel

4
reset_vel

3
reset_pos

2
reset

1
alpha_cmd

Figure 7.20: This is a resettable filter for the pedal position.

86

4
x

3
Y_ddot 2

Y_dot

1
y

Kt

torque_constant

theta_eq

theta_eq

Ks_J

theta-theta_eq gain

Kf_J

sgn(omega) gain

Kd_J

damping gain

Sign

Multiport
Switch

[reset1]

Goto5

[reset_accel]

Goto4

[reset_vel]

Goto3

[reset_pos]

Goto2

[u]

Goto1

[reset_pos]

From14

[reset_vel]

From13

[reset1]

From12

[reset1]

From11

[u]

From10

[reset_accel]

From1

T

z-1
xo

Discrete-Time
Integrator1

T

z-1
xo

Discrete-Time
Integrator

1

Constant

5
reset_accel

4
reset_vel

3
reset_pos

2
reset

1
u

alpha

alpha
alpha

alpha

w_throttle
w_throttle back_EMF

accel

Figure 7.21: This model of the plant is embedded in the filter for the pedal position.

87

theta

1
u

d_action_decay

spring_rate2

-K-

spring_rate1

Ks_J

spring_rate

Cs_J

offset_gain

Kc_J

filter_control

Sign

Product

eu

Math
Function [d_action]

Goto

[d_action]

From

mu
filt_eta

Coulumb_friction

|u|

Abs

2
pedal

1
x omega

Figure 7.22: This simplified version of the real controller is inside of the pedal position
filter.

88

controller allows the adaption portion of the controller to be disabled. In order to meet the

persistency of excitation requirement, the input signals have a sine wave impressed upon

them whenever the manual switch has selected the adaption law and the velocity of the

throttle is near zero. The flip in sign of the reference velocity seems to be a key element of

a sufficiently rich reference signal so that the friction parameter converges. The adaption

law is disabled by setting the derivative of K̂f

J to zero. This avoids the adverse parameter

drift that can occur when the reference signal is not sufficiently exciting the system.

7.6 Driver Model

The driver model shown in figure 7.25 represents the software to hardware interface

for actuating the system. The controller provides a desired current and a combination of

hardware and low-level software implement either a current regulating PWM (figure 7.26)

or a standard PWM with a static duty-cycle (figure 7.27). The shown model is configured

to model the simple PWM.

7.7 Actuator Model

The actuator model is a continuous time model of the electrical dynamics of the

motor. The dynamics and parasitic losses of the H-bride and double fly-back diode circuit

are not included. The system is essentially a hybrid automaton with two states. In the off

state the power supply voltage is zero and in the on state the power supply voltage is 12

volts minus the loss through the internal resistance.

89

This is a standard sliding mode controller design. The (known) nonlinear
dynamics are subtracted off the system and a signum or saturation

function is then used along with a tunable gain, K, to achieve the control
objective. In this case, the control objective is to bring the error between

the desired throttle angle and the actual throttle angle to zero.

1

motor_amps

Kd_J

velocity gain

theta_eq

spring equlibruim

eta

sgn(s) gain
sgn(s)

sgn (velocity)

lambda

lambda

Ks_J

angle gain

lambda

Velocity - Desired Velocity gain

s

To Workspace9

angular_velocity

To Workspace8

filt_angular_velocity

To Workspace7

filt_s

To Workspace6

Kf_hat_J

To Workspace5

reference_acceleration1

To Workspace4

reference_velocity1

To Workspace3

reference_position1

To Workspace2

adaption_on_off

To Workspace11

int_Kf_hat_J

To Workspace10

motor_amps_drivinghuman

To Workspace1

Sine Wave3

Sine Wave1

Sine Wave

Saturation

<=

Relational
Operator

Product1

Product

Persistency_Position2

Persistency_Position1

Persistency_Position

Multiport
Switch

Manual Switch

[pedal_accel]

Goto6

[pedal_vel]

Goto5

[pedal_pos]

Goto4

[adaption_on_off]

Goto3

[coulumb_comp]

Goto2

[s]

Goto1

[angular_velocity]

Goto

-alpha_J

Gain

[pedal_accel]

From9

[pedal_vel]

From8

[pedal_pos]

From7

[adaption_on_off]

From6

[adaption_on_off]

From5

[adaption_on_off]

From4

[adaption_on_off]

From3

[s]

From2

[coulumb_comp]

From1

[angular_velocity]

From

T

z-1

Discrete-Time
Integrator

0

Constant6

1

Constant5

0

Constant4

0

Constant3

0.05

Constant1

0

Constant

1/Kt_J

Angular Acceleration Desired gain1

1

Angular Acceleration Desired gain

|u|

Abs

Trigger

5

pedal_accel

4

pedal_vel

3

pedal_pos

2

tps_vel

1

tps_pos

throttle_angular_velocity<w_throttle>
throttle_angular_velocity<w_throttle>

motor_ampsacceleration

s

<alpha>

Kf_hat_J

throttle_angular_velocity_desired<>

<>

throttle_angular_velocity_desired<>

Figure 7.23: This is a model of the sliding mode controller.

90

This is a standard sliding mode controller design. The (known) nonlinear
dynamics are subtracted off the system and a signum or saturation

function is then used along with a tunable gain, K, to achieve the control
objective. In this case, the control objective is to bring the error between

the desired throttle angle and the actual throttle angle to zero.

1
motor_amps

Kd_J

velocity gain

theta_eq

spring equlibruim

Kf_J

sgn(velocity) gain

eta

sgn(s) gain
sgn(s)

sgn (velocity)

lambda

lambda

Ks_J

angle gain

lambda

Velocity - Desired Velocity gain

motor_amps_limphome

To Workspace1Saturation

1/Kt_J

Angular Acceleration Desired gain1

1

Angular Acceleration Desired gain

f()

Trigger

5
pedal_accel

4
pedal_vel

3
pedal_pos

2
tps_vel

1
tps_pos

throttle_angular_velocity<tps_rads>
throttle_angular_velocity<tps_rads>

<alpha_cmd>

throttle_angular_velocity_desired<alpha_cmd>

motor_amps
motor_ampsacceleration

s

<tps_rads>

<alpha_cmd>

Figure 7.24: This is the same control as the sliding mode controller, but the commanded
position is limited for the limp-home mode.

91

2
direction

1
pwm

duty_cycle

Terminator1

Terminator

duty_cycle

pwm_period

direction

pwm_signal

latched_direction

L
Simple_PWM_Generator

Sign

Saturation

PWM_clock

error

period

direction

pwm_signal

latched_direction

L
PWM_Current_Regulator

Ra/volts_batt

Gain

pwm_period

Constant1

pwm_period

Constant

|u|

Abs

2
desired_current

1
motor_current

direction

pwm

direction

<motor_amps>

<desired_current> error

pwm_clock

Figure 7.25: Model of Drivers & PWM

92

[cnt==0]

[cnt==0]

{cnt = period;
latched_direction = direction;}

[error*latched_direction<=0]

[error*latched_direction>0]

[error*latched_direction<=0 && cnt !=0]

On
entry: pwm_signal = 1;
during: cnt--;

Off
entry: pwm_signal = 0;
during: cnt--;

Figure 7.26: Model of the current regulating PWM

93

[cnt==0]

[cnt==0]

{ latched_duty_cycle = duty_cycle;
cnt = pwm_period;
latched_direction = direction;}

[latched_duty_cycle>0]

[latched_duty_cycle<=0]

[(pwm_period-cnt) > latched_duty_cycle*pwm_period ...
&& cnt != 0]

On
entry:pwm_signal=1;
during: cnt--;

Off
entry: pwm_signal=0;
during: cnt--;

Figure 7.27: Model of a simple PWM

94

The motor on the ETC assembly is modeled as a simple electric motor.
The ETC system is separated out into an actuator and a plant model.

The actuator model consists of the electric motor,
and the plant consists of the mechanical portions of the throttle.

Input is a pulse-width modulated
signal from the driver module.

In general, the actuator models may include any
scaling, hysteresis, deadband, time delays, etc. introduced by actuators.

2
normalized_trq_t

1
motor_current

0

volts1

volts_batt

volts

z

1

Unit Delay

actual_motor_curren

To Workspace

Switch

Product

1
s

Integrator

[on_enable]

Goto1

[back_emf]

Goto

Ra/L

Gain3

1/L

Gain2

Rbat

Gain1

Kt_J

Gain

[back_emf]

From1

[on_enable]

From

3
back_emf

2
direction

1
pwm_state

<back_EMF>

normalized_trq_throttle

<back_EMF>

motor_current

motor_current

motor_current

<pwm>

Figure 7.28: Model of the power electronics and the motor electrical dynamics

95

Chapter 8

Simulations & Experimental

Results

96

8.0.1 Simulation Results

The controller defined by u(t) in equation 4.10 is first verified on a simplified model

of the plant. The PWM is replaced with a mean value approximation. The noise and delay

due to data acquisition are also removed from the model. What is left is the adaptive sliding

mode controller and the electrical and mechanical dynamics of the electronic throttle body.

In order to compare simulation results, λ = 70 and η = 100 were used for all the simulations.

As a first check of the sliding mode controller, a simulation was run with the

adaption law disabled. The simulation trace of the throttle angle and desired throttle

angle are shown in figure 8.1. Note that the response does not appear to meet the step

response requirement. This poor performance is a result of removing the resettable pedal

filter. Whenever the controller is switched into a position tracking mode and the pedal

filter states are reset to the current plant states. As the filter states approach the desired

values, they provide both position and velocity reference values that can be tracked by the

controller. From the simulation trace, it can be seen that because the desired signal was a

sine wave with a relatively small velocity, the error in the velocity signal acted as a drag.

This problem is addressed in the complete controller with pedal filter.

In the next simulation shown in figure 8.2, the adaption law is enabled. Whenever

the reference velocity is within a small ε of 0, the adaption law is activated and a small,

high-frequency sine wave is impressed upon the reference signal. This signal provides the

needed persistent excitation for the friction parameter to converge. Figure 8.3 shows the

simulation trace of the friction parameter estimate, K̂f

J . Note that the estimated value,

although it appears to converge, it converges with steady-state error.

97

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

A
ng

le
 (

ra
d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

M
ot

or
 C

ur
re

nt
 (

A
m

ps
)

time (s)

Figure 8.1: Simulation of closed-loop system with the adaption law disabled; (Desired
throttle angle is sine wave, which starts above the actual angle)

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

A
ng

le
 (

ra
d)

0 10 20 30 40 50 60 70 80
−1

0

1

2

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

M
ot

or
 C

ur
re

nt
 (

A
m

ps
)

time (s)

Figure 8.2: Simulation of the closed-loop system with the adaption law enabled; (The desired
throttle angle contains small amplitude impressed sine waves at the peaks and troughs of
the slow reference sine wave)

98

Figure 8.3: Simulation of the adaption of K̂f

J , where the actual plant parameter is given by
Kf

J = 62.8.

In order to investigate the nature of the steady-state error in the estimated pa-

rameter, several other values of the actual plant parameter were tried. In figure 8.4 and

8.5 a smaller value of Kf

J was selected. The simulation trace of the throttle position was

included for this case because in this case the reduction in the estimated parameter has a

visible effect on the control output; the up and down shifts of the control are attenuated

as the estimated parameter is reduced. Figure 8.6 and figure 8.7 show the adaption only

and the Coulomb friction plant parameter is tried at two larger values. For the values of

the plant parameter between 60 and 120, the steady-state error appears to be linear. This

generalization does not work for the smaller plant parameter.

99

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

A
ng

le
 (

ra
d)

0 10 20 30 40 50 60 70 80
−1

0

1

2

3

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

M
ot

or
 C

ur
re

nt
 (

A
m

ps
)

time (s)

Figure 8.4: Simulation of the closed-loop system with a smaller value of Kf

J

Figure 8.5: Simulation of the adaption of K̂f

J , where the actual plant parameter is given by
Kf

J = 31.4.

100

Figure 8.6: Simulation of the adaption of K̂f

J , where the actual plant parameter is given by
Kf

J = 120.

Figure 8.7: Simulation of the adaption of K̂f

J , where the actual plant parameter is given by
Kf

J = 90.

101

8.0.2 Conclusions

The problems with the adaptive portion of the controller arise from the discrete

implementation of the continuous control law. The Lyapunov stability theory guarantees

that if derivative of the Lyapunov function, V (t), is negative definite (and V and the system

satisfy certain properties), then the system will be globally, asymptotically stable and the

estimated parameter will converge to the correct value of the plant parameter with zero

error. The problem with the discrete implementation can be seen if V (t) and V̇ (t) are

examined. There are intervals where V (t) is increasing yet V̇ (t) is still negative.

There are two ways to design discrete controllers for continuous plants. The con-

troller can be designed as a continuous time equation with the continuous time plant and

the controller is discretized for the implementation. This is the approach taken here, and

this design method was sensitive to the discrete approximation. (The steady-state error dis-

appears as the sampling time is reduced.) The other design method is to discretize the plant

and then design a discrete controller for the discrete plant. This design can have problems

with inter-sample behavior of the plant, but this method might solve the difficulty with the

adaptive portion of the controller.

Due to the problems with the adaptive portion of the controller in simulation,

which did not include noise, delay and actuator dynamics, the controller that was imple-

mented and tested on the physical hardware only implemented the sliding mode controller.

102

8.0.3 Experimental Results

Implementation

The controller consists of three hand-written C functions. Each function corre-

sponds to one of the three tasks: the manager, monitor or servo-control task. A hardware

abstraction layer consists of a set of ETC specific driver functions, which call low-level

functions that access the hardware or provide simulated values for hardware that is not

accessible (e.g. vehicle speed). A Giotto program specifies the rates of the tasks, the data

initialization, the data dependencies of tasks inputs on each others outputs and sensor in-

puts, and the connection of task outputs to actuators. At run-time, the Giotto framework

calls the functions of the ETC hardware abstraction layer and passes data from sensors to

task inputs, from task outputs to task inputs, and from task outputs to actuators.

The controller is compiled with the Diab compiler and targeted for the MPC555

with WindRiver’s OSEKWorks operating system. Using WindRiver’s Tornado IDE, the

controller is compiled, linked and loaded into the target’s RAM. When the system is started,

the entry point is the Giotto framework and that framework is responsible for initializing the

system, calling the tasks at the correct rate and moving data. Controller data was buffered

up while the controller was running and then uploaded for analysis after the controller was

disabled. The only link through which this data can be retrieved is through a serial port

connection.

103

Verification

Figure 8.8 shows the states of the throttle under closed-loop control with the sliding

mode controller.

Figure 8.8: Experimental results of the sliding-mode controller

Figure 8.9 shows one cycle of the Giotto schedule. The first three tasks listed

on the vertical axis make up the embedded machine (a type of virtual machine), which

interprets the Giotto program. Over the 30 ms cycle, the servo-control runs 10 times,

the manager runs 3 times and the monitor runs only once. It is important to note that

104

although the monitor was finished within 3 ms of the beginning of the cycle, its output

is not made available to the manager or servo-control tasks until the end of the allotted

30 ms over which the monitor must complete its calculations. This provides deterministic

performance because the availability of the output is determined by the passage of time

instead of unknown factors within the processor, operating system, etc. If this program is

run on a slower processor, the embedded machine will make use of preemption to ensure

that the Giotto program is correctly executed if possible. This would mean that if the

monitor started before 3 ms, but did not finish before 3 ms (as it does in the figure), then

the embedded machine will interrupt the monitor and run the servo-control task again.

When that task completes, it will return to the monitor task to complete its calculations.

Figure 8.9: Timing data taken with WindRiver’s WindView tool, which shows the execution
of tasks in the Giotto program.

105

Bibliography

[1] Ken Butts, Dave Bostic, Alongkrit Chutinan, Jeffrey Cook, Bill Milam, and Yanxin

Wang. Usage scenarios for an Automated Model Compiler. In Thomas A. Henziger

and Christoph M. Kirsch, editors, Embedded software : proceedings ; first international

workshop, pages 66–79. Spring-Verlag, October 2001.

[2] J. Christian Gerdes and J. Karl Hedrick. Hysteresis control of nonlinear single-acting

actuators as applied to brake/throttle switching. In Proceedings of the American Con-

trol Conference, pages 1692–1696, 1999.

[3] Peter L. Goddard. Software FMEA techniques. In 2000 Proceedings, Annual Reliability

and Maintainability Symposium, pages 118–123, 2000.

[4] Derek J. Hatley and Imtiaz A. Pirbhai. Strategies for real-time system specification.

Dorset House Pub., New York, NY, 1998.

[5] Thomas A. Henziger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A

Time-Triggered Language for Embedded Programming. In Thomas A. Henziger and

Christoph M. Kirsch, editors, Embedded software : proceedings ; first international

workshop, pages 166–184. Spring-Verlag, October 2001.

106

[6] Ian Kendall. The safety assurance of the AJV8 electronic throttle. In IEE Colloquium

on The Electrical System of the Jaguar XK8, pages 2/1–8, 1996.

[7] K. Kimseng, M. Hoit, N. Tiwari, and M. Pecht. Physics-of-failure assessment of a

cruise control module. Microelectronics Reliability, 39:1423–1444, 1999.

[8] Asaka Kitahara, Akiko Sato, Masatoshi Hoshino, Nobuo Kurihara, and Seichi Shin.

LQG based electronic throttle control with a two degree of freedom structure. In

Proceedings of the 35th Conference on Decision & Control, pages 1785–1788, 1996.

[9] Herman Kopetz. Real-time systems : design principles for distributed embedded appli-

cations. Kluwer Academic Publishers, Norwell, Massachusetts, 1997.

[10] Daniel McKay, Gary Nichols, and Bart Schreurs. Delphi Electronic Throttle Control

Systems for Model Year 2000; Driver Features, System Security, and OEM Benefits.

ETC for the Mass Market. Technical report, Delphi Automotive Systems, 2000.

[11] Carlo Rossi, Andrea Tilli, and Alberto Tonielli. Robust control of a throttle body

for drive by wise operation of automotive engines. In IEEE Transactions on Control

Systems Technology, volume 8, pages 993–1002, 2000.

[12] Paul Smith, Shailesh Patel, Weiqian Sun, Rajeev Ramanan, Hank Donald, Steve

Toeppe, Scott Ranville, Dave Bostic, and Ken Butts. CACSD in Production De-

velopment: An Engine Control Case Study. Technical report, Ford Motor Company,

2000.

[13] Jae-Bok Song and Kyung-Seok Byun. Throttle actuator control system of vehicle

traction control. Mechatronics, 9:477–495, 1999.

107

[14] Jeffrey T. Spooner and Kevin M. Passino. Fault-tolerant control for automated highway

systems. In IEEE Transactions on Vehicular Technology, volume 46, pages 770–785,

1997.

[15] A. Stotsky, B. Egardt, and S. Eriksson. Variable structure control of engine idle speed

with estimation of unmeasurable disturbances. In Proceedings of the 38th Conference

on Decision & Control, pages 322–327, 1999.

[16] M. Yokoyama, K. Shimizu, and N. Okamoto. Application of sliding-mode servo con-

trollers to electronic throttle control. In Proceedings of the 37th Conference on Decision

& Control, pages 1541–1545, 1998.

108

Appendix A

Hardware Reference

A.1 Wiring

Wire Color Pin # Name Description
Black 7 & Shield AGRND Analog Ground
Green 2 TPS1 Throttle Position Sensor 1
Green/Black 3 TPS2 Throttle Position Sensor 2
Red 1 IN1 H-Bridge Input 1
Red/Black 4 IN2 H-Bridge Input 2
White 6 DI1 H-Bridge Disable 1
White/Black 5 DI2 H-Bridge Disable 2
Orange 9 IMTR Motor Current

Table A.1: This table provides a mapping between the various signals from the throttle
driver electronics and pin numbers and wire colors.

109

TPS1

TPS2 TPS +

MOTOR+MOTOR -

TPS -

4

3 1

26

5

Figure A.1: Pin-out of the BMW throttle electrical connector

1

WHITE - TPS1 RED - TPS+ BLACK - TPS -

GREEN - TPS2 SHIELD - GRND

2 3 4 5

7 96 8

DB 9 TPS - Connector

Figure A.2: Pin-outs of the DB9 connector for the TPS signals

1

IN1

2 3 4 5

7 96 8

DB 9 Driver/Microprocessor -
Connector

IN1TPS1 TPS2 DISABLE2

DISABLE1 AGRND STATUS CURRENT

Figure A.3: Pin-outs of the DB9 connector between the driver electronics and the
microprocessor

